Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Dev Biol ; 457(1): 104-118, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31550480

RESUMEN

During endochondral ossification, the differentiation of proliferating into hypertrophic chondrocytes is a key step determining the pace of bone formation and the future length of the skeletal elements. A variety of transcription factors are expressed at the onset of hypertrophy coordinating the expression of different signaling molecules like Bmps, Ihh and Wnt proteins. In this study, we characterized the murine Wnt5a promoter and provide evidence that two alternative Wnt5a transcripts, Ts1 and Ts2, are differentially expressed in the developing skeletal elements. Ts2 expression decreases while Ts1 expression increases during chondrocyte differentiation. The transcription factor Trps1 and the activator form of Gli3 (Gli3A), which is a mediator of Hedgehog signaling, activate Wnt5a expression. In Chromatin Immunoprecipitation and reporter gene assays, we identified two upstream regulatory sequences (URS) in the Wnt5a promoter mediating either activating or repressive functions. The activating URS1 is bound by Trps1 and Gli3A in vitro and in vivo to upregulate Wnt5a expression. Loss of both transcription factors decreases endogenous Wnt5a mRNA and protein levels during chondrocyte differentiation, thereby identifying Wnt5a as a target gene of Trps1 and Gli3A in chondrocytes.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/metabolismo , Proteína Wnt-5a/genética , Proteína Gli3 con Dedos de Zinc/metabolismo , Animales , Proliferación Celular , Condrocitos/citología , Condrocitos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Osteogénesis , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
2.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918436

RESUMEN

Osteoarthritis (OA) represents one major cause of disability worldwide still evading efficient pharmacological or cellular therapies. Severe degeneration of extracellular cartilage matrix precedes the loss of mobility and disabling pain perception in affected joints. Recent studies showed that a reduced heparan sulfate (HS) content protects cartilage from degradation in OA-animal models of joint destabilization but the underlying mechanisms remained unclear. We aimed to clarify whether low HS-content alters the mechano-response of chondrocytes and to uncover pathways relevant for HS-related chondro-protection in response to loading. Tissue-engineered cartilage with HS-deficiency was generated from rib chondrocytes of mice carrying a hypomorphic allele of Exostosin 1 (Ext1), one of the main HS-synthesizing enzymes, and wildtype (WT) littermate controls. Engineered cartilage matured for 2 weeks was exposed to cyclic unconfined compression in a bioreactor. The molecular loading response was determined by transcriptome profiling, bioinformatic data processing, and qPCR. HS-deficient chondrocytes expressed 3-6% of WT Ext1-mRNA levels. Both groups similarly raised Sox9, Col2a1 and Acan levels during maturation. However, HS-deficient chondrocytes synthesized and deposited 50% more GAG/DNA. TGFß and FGF2-sensitivity of Ext1gt/gt chondrocytes was similar to WT cells but their response to BMP-stimulation was enhanced. Loading induced similar activation of mechano-sensitive ERK and P38-signaling in WT and HS-reduced chondrocytes. Transcriptome analysis reflected regulation of cell migration as major load-induced biological process with similar stimulation of common (Fosl1, Itgα5, Timp1, and Ngf) as well as novel mechano-regulated genes (Inhba and Dhrs9). Remarkably, only Ext1-hypomorphic cartilage responded to loading by an expression signature of negative regulation of apoptosis with pro-apoptotic Bnip3 being selectively down-regulated. HS-deficiency enhanced BMP-sensitivity, GAG-production and fostered an anti-apoptotic expression signature after loading, all of which may protect cartilage from load-induced erosion.


Asunto(s)
Condrocitos/fisiología , Heparitina Sulfato/deficiencia , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones Transgénicos , Cultivo Primario de Células , Soporte de Peso
3.
J Pathol ; 249(1): 114-125, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31038742

RESUMEN

Autosomal Dominant Polycystic Kidney Disease is characterised by the development of fluid-filled cysts in the kidneys which lead to end-stage renal disease (ESRD). In the majority of cases, the disease is caused by a mutation in the Pkd1 gene. In a previous study, we demonstrated that renal injury can accelerate cyst formation in Pkd1 knock-out (KO) mice. In that study, we found that after injury four-jointed (Fjx1), an upstream regulator of planar cell polarity and the Hippo pathway, was aberrantly expressed in Pkd1 KO mice compared to WT. Therefore, we hypothesised a role for Fjx1 in injury/repair and cyst formation. We generated single and double deletion mice for Pkd1 and Fjx1, and we induced toxic renal injury using the nephrotoxic compound 1,2-dichlorovinyl-cysteine. We confirmed that nephrotoxic injury can accelerate cyst formation in Pkd1 mutant mice. This caused Pkd1 KO mice to reach ESRD significantly faster; unexpectedly, double KO mice survived significantly longer. Cyst formation was comparable in both models, but we found significantly less fibrosis and macrophage infiltration in double KO mice. Taken together, these data suggest that Fjx1 disruption protects the cystic kidneys against kidney failure by reducing inflammation and fibrosis. Moreover, we describe, for the first time, an interesting (yet unidentified) mechanism that partially discriminates cyst growth from fibrogenesis. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Lesión Renal Aguda/complicaciones , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Fallo Renal Crónico/etiología , Riñón/metabolismo , Riñón Poliquístico Autosómico Dominante/complicaciones , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Animales , Cisteína/análogos & derivados , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fibrosis , Mediadores de Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Riñón/patología , Fallo Renal Crónico/genética , Fallo Renal Crónico/metabolismo , Masculino , Ratones Noqueados , Mutación , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/genética , Factores de Tiempo , Vía de Señalización Wnt
4.
Nature ; 567(7747): 178-179, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30850738
5.
FASEB J ; 30(2): 727-37, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26481309

RESUMEN

Scott syndrome is a rare bleeding disorder, characterized by altered Ca(2+)-dependent platelet signaling with defective phosphatidylserine (PS) exposure and microparticle formation, and is linked to mutations in the ANO6 gene, encoding anoctamin (Ano)6. We investigated how the complex platelet phenotype of this syndrome is linked to defective expression of Anos or other ion channels. Mice were generated with heterozygous of homozygous deficiency in Ano6, Ano1, or Ca(2+)-dependent KCa3.1 Gardos channel. Platelets from these mice were extensively analyzed on molecular functions and compared with platelets from a patient with Scott syndrome. Deficiency in Ano1 or Gardos channel did not reduce platelet responses compared with control mice (P > 0.1). In 2 mouse strains, deficiency in Ano6 resulted in reduced viability with increased bleeding time to 28.6 min (control 6.4 min, P < 0.05). Platelets from the surviving Ano6-deficient mice resembled platelets from patients with Scott syndrome in: 1) normal collagen-induced aggregate formation (P > 0.05) with reduced PS exposure (-65 to 90%); 2) lowered Ca(2+)-dependent swelling (-80%) and membrane blebbing (-90%); 3) reduced calpain-dependent protein cleavage (-60%); and 4) moderately affected apoptosis-dependent PS exposure. In conclusion, mouse deficiency of Ano6 but not of other channels affects viability and phenocopies the complex changes in platelets from hemostatically impaired patients with Scott syndrome.


Asunto(s)
Trastornos de la Coagulación Sanguínea/metabolismo , Plaquetas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo , Proteolisis , Animales , Anoctamina-1 , Anoctaminas , Trastornos de la Coagulación Sanguínea/genética , Trastornos de la Coagulación Sanguínea/patología , Plaquetas/patología , Calcio/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/patología , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Femenino , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Masculino , Ratones , Ratones Noqueados , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Fosfolípidos/genética
6.
J Biol Chem ; 290(10): 6270-80, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25589784

RESUMEN

Anoctamin-6 (Ano6, TMEM16F) belongs to a family of putative Ca(2+)-activated Cl(-) channels and operates as membrane phospholipid scramblase. Deletion of Ano6 leads to reduced skeleton size, skeletal deformities, and mineralization defects in mice. However, it remains entirely unclear how a lack of Ano6 leads to a delay in bone mineralization by osteoblasts. The Na(+)/Ca(2+) exchanger NCX1 was found to interact with Ano6 in a two-hybrid split-ubiquitin screen. Using human osteoblasts and osteoblasts from Ano6(-/-) and WT mice, we demonstrate that NCX1 requires Ano6 to efficiently translocate Ca(2+) out of osteoblasts into the calcifying bone matrix. Ca(2+)-activated anion currents are missing in primary osteoblasts isolated from Ano6 null mice. Our findings demonstrate the importance of NCX1 for bone mineralization and explain why deletion of an ion channel leads to the observed mineralization defect: Ano6 Cl(-) currents are probably required to operate as a Cl(-) bypass channel, thereby compensating net Na(+) charge movement by NCX1.


Asunto(s)
Calcificación Fisiológica/genética , Calcio/metabolismo , Canales de Cloruro/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Anoctaminas , Canales de Cloruro/metabolismo , Humanos , Transporte Iónico/genética , Ratones , Osteoblastos/metabolismo , Técnicas de Placa-Clamp , Proteínas de Transferencia de Fosfolípidos/genética , Intercambiador de Sodio-Calcio/genética
7.
Cell Physiol Biochem ; 37(5): 1934-44, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26584292

RESUMEN

BACKGROUND/AIMS: The ubiquitously expressed Ca2+ Activated Cl- Channel Ano6 participates in the stimulation of cell membrane scrambling. Defective Ano6 underlies the Scott syndrome, an inherited bleeding disorder with impaired scrambling of plasma membrane phospholipids. At least in theory, the bleeding disorder of Scott syndrome may result from impaired platelet function. Activators of platelets include thrombin and collagen related peptide (CRP), which trigger increase of cytosolic Ca2+-activity ([Ca2+]i), production of reactive oxygen species (ROS), degranulation, integrin activation, as well as cell shrinkage and phospholipid scrambling of the cell membrane. The present study thus explored whether Ano6 modifies activation-induced alterations of cytosolic Ca2+-activity ([Ca2+]i), degranulation (P-selectin exposure), integrin activation, phosphatidylserine exposure on the platelet surface and platelet volume. METHODS: Platelets from mice lacking Ano6 (ano6-/-) were compared to platelets from corresponding wild-type mice (ano6+/+). [Ca2+]i was estimated from Fluo-3 fluorescence, ROS from DCFDA fluorescence, degranulation from P-selectin abundance, integrin activation from αIIbß3-integrin abundance, phosphatidylserine abundance from annexin-V-binding, and cell volume from forward scatter. RESULTS: Platelet number in blood was slightly higher in ano6-/- mice than in ano6+/+ mice. Without activation [Ca2+]i and volume were similar in ano6-/- and ano6+/+ platelets as well as ROS abundance, P-selectin abundance, αIIbß3 integrin activation, and phosphatidylserine exposure were negligible in both genotypes. Thrombin (0.01 U/ml) and CRP (2 or 5 µg/ml) increased [Ca2+]i, ROS abundance, platelet degranulation, αIIbß3 integrin activation, and triggered annexin-V-binding as well as cell shrinkage, all effects less pronounced in ano6-/- than in ano6+/+ platelets. CONCLUSIONS: Genetic knockout of Ano6 blunts thrombin- and CRP-induced activation and apoptosis of blood platelets.


Asunto(s)
Apoptosis , Plaquetas/metabolismo , Activación Plaquetaria , Compuestos de Anilina/química , Animales , Anoctaminas , Apoptosis/efectos de los fármacos , Plaquetas/citología , Proteína C-Reactiva/farmacología , Calcio/análisis , Ratones , Ratones Noqueados , Selectina-P/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/deficiencia , Proteínas de Transferencia de Fosfolípidos/genética , Activación Plaquetaria/efectos de los fármacos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Trombina/farmacología , Xantenos/química
8.
PLoS Comput Biol ; 10(7): e1003707, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25033298

RESUMEN

Sonic Hedgehog (Shh) is a representative of the evolutionary closely related class of Hedgehog proteins that have essential signaling functions in animal development. The N-terminal domain (ShhN) is also assigned to the group of LAS proteins (LAS = Lysostaphin type enzymes, D-Ala-D-Ala metalloproteases, Sonic Hedgehog), of which all members harbor a structurally well-defined Zn2+ center; however, it is remarkable that ShhN so far is the only LAS member without proven peptidase activity. Another unique feature of ShhN in the LAS group is a double-Ca2+ center close to the zinc. We have studied the effect of these calcium ions on ShhN structure, dynamics, and interactions. We find that the presence of calcium has a marked impact on ShhN properties, with the two calcium ions having different effects. The more strongly bound calcium ion significantly stabilizes the overall structure. Surprisingly, the binding of the second calcium ion switches the putative catalytic center from a state similar to LAS enzymes to a state that probably is catalytically inactive. We describe in detail the mechanics of the switch, including the effect on substrate co-ordinating residues and on the putative catalytic water molecule. The properties of the putative substrate binding site suggest that ShhN could degrade other ShhN molecules, e.g. by cleavage at highly conserved glycines in ShhN. To test experimentally the stability of ShhN against autodegradation, we compare two ShhN mutants in vitro: (1) a ShhN mutant unable to bind calcium but with putative catalytic center intact, and thus, according to our hypothesis, a constitutively active peptidase, and (2) a mutant carrying additionally mutation E177A, i.e., with the putative catalytically active residue knocked out. The in vitro results are consistent with ShhN being a cannibalistic zinc-peptidase. These experiments also reveal that the peptidase activity depends on pH.


Asunto(s)
Calcio/metabolismo , Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Zinc/metabolismo , Animales , Sitios de Unión , Calcio/química , Ratones , Simulación de Dinámica Molecular , Zinc/química
9.
PLoS Genet ; 8(5): e1002711, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22589746

RESUMEN

PRDM family members are transcriptional regulators involved in tissue specific differentiation. PRDM5 has been reported to predominantly repress transcription, but a characterization of its molecular functions in a relevant biological context is lacking. We demonstrate here that Prdm5 is highly expressed in developing bones; and, by genome-wide mapping of Prdm5 occupancy in pre-osteoblastic cells, we uncover a novel and unique role for Prdm5 in targeting all mouse collagen genes as well as several SLRP proteoglycan genes. In particular, we show that Prdm5 controls both Collagen I transcription and fibrillogenesis by binding inside the Col1a1 gene body and maintaining RNA polymerase II occupancy. In vivo, Prdm5 loss results in delayed ossification involving a pronounced impairment in the assembly of fibrillar collagens. Collectively, our results define a novel role for Prdm5 in sustaining the transcriptional program necessary to the proper assembly of osteoblastic extracellular matrix.


Asunto(s)
Desarrollo Óseo/genética , Colágeno Tipo I , Osteoblastos , ARN Polimerasa II/genética , Transcripción Genética , Células 3T3 , Animales , Diferenciación Celular/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Decorina/genética , Decorina/metabolismo , Desarrollo Embrionario/genética , Elementos de Facilitación Genéticos , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Colágenos Fibrilares , Regulación del Desarrollo de la Expresión Génica , Genoma , Ratones , Especificidad de Órganos , Osteoblastos/citología , Osteoblastos/metabolismo , Regiones Promotoras Genéticas , Proteoglicanos/genética , Proteoglicanos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Carbohydr Polym ; 341: 122294, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876708

RESUMEN

The role of glycosaminoglycans (GAGs) in modulating bone morphogenetic protein (BMP) signaling represents a recent and underexplored area. Conflicting reports suggest a dual effect: some indicate a positive influence, while others demonstrate a negative impact. This duality suggests that the localization of GAGs (either at the cell surface or within the extracellular matrix) or the specific type of GAG may dictate their signaling role. The precise sulfation patterns of heparan sulfate (HS) responsible for BMP2 binding remain elusive. BMP2 exhibits a preference for binding to HS over other GAGs. Using well-characterized biomaterials mimicking the extracellular matrix, our research reveals that HS promotes BMP2 signaling in the extracellular space, contrary to chondroitin sulfate (CS), which enhances BMP2 bioactivity at the cell surface. Further observations indicate that a central IdoA (2S)-GlcNS (6S) tri-sulfated motif within HS hexasaccharides enhances binding. Nevertheless, BMP2 exhibits a degree of adaptability to various HS sulfation types and sequences. Molecular dynamic simulations attribute this adaptability to the BMP2 N-terminal end flexibility. Our findings illustrate the complex interplay between GAGs and BMP signaling, highlighting the importance of localization and specific sulfation patterns. This understanding has implications for the development of biomaterials with tailored properties for therapeutic applications targeting BMP signaling pathways.


Asunto(s)
Proteína Morfogenética Ósea 2 , Glicosaminoglicanos , Heparitina Sulfato , Transducción de Señal , Proteína Morfogenética Ósea 2/metabolismo , Heparitina Sulfato/metabolismo , Heparitina Sulfato/química , Humanos , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Simulación de Dinámica Molecular , Animales , Unión Proteica
11.
Proc Natl Acad Sci U S A ; 107(5): 2054-9, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20080592

RESUMEN

We report a mouse model of multiple osteochondromas (MO), an autosomal dominant disease in humans, also known as multiple hereditary exostoses (MHE or HME) and characterized by the formation of cartilage-capped osseous growths projecting from the metaphyses of endochondral bones. The pathogenesis of these osteochondromas has remained unclear. Mice heterozygous for Ext1 or Ext2, modeling the human genotypes that cause MO, occasionally develop solitary osteochondroma-like structures on ribs [Lin et al. (2000) Dev Biol 224(2):299-311; Stickens et al. (2005) Development 132(22):5055-5068]. Rather than model the germ-line genotype, we modeled the chimeric tissue genotype of somatic loss of heterozygosity (LOH), by conditionally inactivating Ext1 via head-to-head loxP sites and temporally controlled Cre-recombinase in chondrocytes. These mice faithfully recapitulate the human phenotype of multiple metaphyseal osteochondromas. We also confirm homozygous disruption of Ext1 in osteochondroma chondrocytes and their origin in proliferating physeal chondrocytes. These results explain prior modeling failures with the necessity for somatic LOH in a developmentally regulated cell type.


Asunto(s)
Neoplasias Óseas/etiología , Condrocitos/metabolismo , Exostosis Múltiple Hereditaria/etiología , N-Acetilglucosaminiltransferasas/genética , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Proliferación Celular , Condrocitos/patología , Modelos Animales de Enfermedad , Exones , Exostosis Múltiple Hereditaria/genética , Exostosis Múltiple Hereditaria/patología , Marcación de Gen , Homocigoto , Humanos , Pérdida de Heterocigocidad , Ratones , Ratones Transgénicos , Mutación , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , Fenotipo
12.
BMC Cell Biol ; 12: 26, 2011 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-21645366

RESUMEN

BACKGROUND: The capacity of muscle to grow or to regenerate after damage is provided by adult stem cells, so called satellite cells, which are located under the basement lamina of each myofiber. Upon activation satellite cells enter the cell cycle, proliferate and differentiate into myoblasts, which fuse to injured myofibers or form new fibers. These processes are tightly controlled by many growth factors. RESULTS: Here we investigate the role of bone morphogenetic proteins (BMPs) during satellite cell differentiation. Unlike the myogenic C2C12 cell line, primary satellite cells do not differentiate into osteoblasts upon BMP signaling. Instead BMP signaling inhibits myogenic differentiation of primary satellite cells ex vivo. In contrast, inhibition of BMP signaling results in cell cycle exit, followed by enhanced myoblast differentiation and myotube formation. Using an in vivo trauma model we demonstrate that satellite cells respond to BMP signals during the regeneration process. Interestingly, we found the BMP inhibitor Chordin upregulated in primary satellite cell cultures and in regenerating muscles. In both systems Chordin expression follows that of Myogenin, a marker for cells committed to differentiation. CONCLUSION: Our data indicate that BMP signaling plays a critical role in balancing proliferation and differentiation of activated satellite cells and their descendants. Initially, BMP signals maintain satellite cells descendants in a proliferating state thereby expanding cell numbers. After cells are committed to differentiate they upregulate the expression of the BMP inhibitor Chordin thereby supporting terminal differentiation and myotube formation in a negative feedback mechanism.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Proliferación Celular , Células Satélite del Músculo Esquelético/citología , Transducción de Señal , Animales , Línea Celular , Linaje de la Célula , Glicoproteínas/genética , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Fosforilación , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Proteínas Smad/metabolismo , Regulación hacia Arriba
13.
Chromosoma ; 119(1): 99-113, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19949809

RESUMEN

The MYST histone acetyltransferase (HAT) dTip60 is part of a multimeric protein complex that unites both HAT and chromatin remodeling activities. Here, we sought to gain insight into the biological functions of dTip60. Strong ubiquitous dTip60 knock-down in flies was lethal, whereas knock-down in the wing imaginal disk led to developmental defects in the wing. dTip60 localized to the nucleus in early embryos and was present in a large number of interbands on polytene chromosomes. Genome-wide expression analysis upon depletion of dTip60 in cell culture showed that it regulated a large number of genes in Drosophila, among which those with chromatin-related functions were highly enriched. Surprisingly, a significant portion of these genes were upregulated upon dTip60 loss, indicating that dTip60 has repressive as well as activating functions. dTip60 protein was directly located at promoter regions of a subset of repressed genes, suggesting a direct role in gene repression. Comparison of the gene expression signature of dTip60 downregulation with that of histone deacetylase inhibition with trichostatin A revealed a significant correlation, suggesting that the dTip60 complex recruits an HDAC-containing complex to regulate gene expression in the Drosophila genome.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/enzimología , Regulación de la Expresión Génica , Genoma de los Insectos , Histona Acetiltransferasas/metabolismo , Animales , Drosophila/embriología , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Histona Acetiltransferasas/genética , Transporte de Proteínas , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
14.
Dev Dyn ; 239(6): 1779-88, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20503373

RESUMEN

Mammalian sulfatase enzymes participate in various processes, such as hormone regulation, lysosomal degradation and modulation of several signaling pathways. The sulfatase gene family consists of 14 members in mice and 17 in humans. Mutations of at least eight members are associated with human disorders, with main disease manifestations in the nervous system and skeleton. Despite their biological significance, little is known about their expression during embryonic development, especially for the more recently discovered gene family members. By in situ hybridization, we compared the expression patterns of nine sulfatases: ArsB, ArsG, ArsI, ArsJ, Galns, Gns, Ids, Sulf1, and Sulf2 in midgestation mouse embryos. Of interest, overlapping expression domains of several sulfatases could be detected in the developing central nervous system, eye, skeleton, and inner organs. Moreover, novel expression patterns for ArsG in choroid plexus, ArsI in hypertrophic chondrocytes and ArsJ in joints were identified.


Asunto(s)
Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Sulfatasas/fisiología , Animales , Embrión de Mamíferos , Desarrollo Embrionario , Ojo/embriología , Ojo/metabolismo , Femenino , Genes , Ratones , Ratones Endogámicos C57BL , Organogénesis , Embarazo , Sulfatasas/metabolismo
15.
Dev Dyn ; 239(6): 1818-26, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20503377

RESUMEN

Signaling of Indian hedgehog (Ihh), one of the key regulators of endochondral ossification is mediated by transcription factors of the Gli family, Gli1, Gli2, and Gli3. Gli3 and to a lesser extent Gli2 can be proteolytically processed into short repressor proteins. Upon Ihh signaling, processing is inhibited and the full-length proteins function as activators of transcription. Gli3 has been shown to mainly act as a repressor of Ihh target genes in chondrocytes, but the role of other Gli isoforms is less clear. Analyzing mouse mutants deficient for Ihh;Gli2 or Gli3;Gli2, we show here that the Gli2 repressor has no detectable function in chondrocyte or osteoblast differentiation. Instead, Gli2 seems to act as an activator to fully induce the expression of Ihh target genes in skeletal tissues. Furthermore, we show that, in the absence of Gli3, the activator function of Gli2 is sufficient to induce Ihh-dependent osteoblast differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Osteogénesis/fisiología , Proteínas/metabolismo , Proteínas/fisiología , Animales , Diferenciación Celular/genética , Condrocitos/metabolismo , Condrocitos/fisiología , Embrión de Mamíferos , Femenino , Ratones , Ratones Mutantes , Ratones Transgénicos , Osteoblastos/metabolismo , Osteoblastos/fisiología , Osteogénesis/genética , Embarazo , Proteínas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Proteína con Dedos de Zinc GLI1
16.
Methods Mol Biol ; 2230: 139-149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33197013

RESUMEN

To investigate chondrocyte biology in an organized structure, limb explant cultures have been established that allow for the cultivation of the entire cartilaginous skeletal elements. In these organ cultures, the arrangement of chondrocytes in the cartilage elements and their interaction with the surrounding perichondrium and joint tissue are maintained. Chondrocyte proliferation and differentiation can thus be studied under nearly in vivo conditions. Growth factors and other soluble agents can be administered to the explants and their effect on limb morphogenesis, gene expression and cell-matrix interactions can be studied. Cotreatment with distinct growth factors and their inhibitors as well as the use of transgenic mice will allow one to decipher the epistatic relationship between different signaling systems and other regulators of chondrocyte differentiation. Here we describe the protocol to culture cartilage explants ex vivo and discuss the advantages and disadvantages of the culture system.


Asunto(s)
Cartílago/crecimiento & desarrollo , Condrogénesis/genética , Extremidades/crecimiento & desarrollo , Técnicas de Cultivo de Órganos/métodos , Animales , Diferenciación Celular/genética , Condrocitos , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Ratones , Ratones Transgénicos/genética , Transducción de Señal/genética
17.
J Bone Miner Res ; 36(5): 968-985, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33534175

RESUMEN

Epigenetic modifications play critical roles in regulating cell lineage differentiation, but the epigenetic mechanisms guiding specific differentiation steps within a cell lineage have rarely been investigated. To decipher such mechanisms, we used the defined transition from proliferating (PC) into hypertrophic chondrocytes (HC) during endochondral ossification as a model. We established a map of activating and repressive histone modifications for each cell type. ChromHMM state transition analysis and Pareto-based integration of differential levels of mRNA and epigenetic marks revealed that differentiation-associated gene repression is initiated by the addition of H3K27me3 to promoters still carrying substantial levels of activating marks. Moreover, the integrative analysis identified genes specifically expressed in cells undergoing the transition into hypertrophy. Investigation of enhancer profiles detected surprising differences in enhancer number, location, and transcription factor binding sites between the two closely related cell types. Furthermore, cell type-specific upregulation of gene expression was associated with increased numbers of H3K27ac peaks. Pathway analysis identified PC-specific enhancers associated with chondrogenic genes, whereas HC-specific enhancers mainly control metabolic pathways linking epigenetic signature to biological functions. Since HC-specific enhancers show a higher conservation in postnatal tissues, the switch to metabolic pathways seems to be a hallmark of differentiated tissues. Surprisingly, the analysis of H3K27ac levels at super-enhancers revealed a rapid adaption of H3K27ac occupancy to changes in gene expression, supporting the importance of enhancer modulation for acute alterations in gene expression. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Condrocitos , Epigénesis Genética , Diferenciación Celular/genética , Linaje de la Célula , Condrogénesis/genética
18.
Dev Biol ; 328(1): 40-53, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19389374

RESUMEN

Trps1, the gene mutated in human Tricho-Rhino-Phalangeal syndrome, represents an atypical member of the GATA-family of transcription factors. Here we show that Trps1 interacts with Indian hedgehog (Ihh)/Gli3 signaling and regulates chondrocyte differentiation and proliferation. We demonstrate that Trps1 specifically binds to the transactivation domain of Gli3 in vitro and in vivo, whereas the repressor form of Gli3 does not interact with Trps1. A domain of 185aa within Trps1, containing three predicted zinc fingers, is sufficient for interaction with Gli3. Using different mouse models we find that in distal chondrocytes Trps1 and the repressor activity of Gli3 are required to expand distal cells and locate the expression domain of Parathyroid hormone related peptide. In columnar proliferating chondrocytes Trps1 and Ihh/Gli3 have an activating function. The differentiation of columnar and hypertrophic chondrocytes is supported by Trps1 independent of Gli3. Trps1 seems thus to organize chondrocyte differentiation interacting with different subsets of co-factors in distinct cell types.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Condrocitos/fisiología , Factores de Transcripción GATA/fisiología , Factores de Transcripción de Tipo Kruppel/fisiología , Proteínas del Tejido Nervioso/fisiología , Animales , Células COS , Chlorocebus aethiops , Condrocitos/citología , Condrocitos/metabolismo , Cruzamientos Genéticos , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Regulación de la Expresión Génica , Glutatión Transferasa/metabolismo , Humanos , Hibridación in Situ , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Plásmidos , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Proteínas Represoras , Transactivadores/genética , Transactivadores/metabolismo , Transfección , Proteína Gli3 con Dedos de Zinc
19.
Pediatr Nephrol ; 25(4): 625-31, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19949815

RESUMEN

During endochondral ossification bones are formed as cartilage templates in which chondrocytes proliferate, differentiate into hypertrophic chondrocytes and are gradually replaced by bone. Postnatally, remnants of embryonic chondrocytes remain in a restricted domain between the ossified regions of the bones forming the growth plate. The coordinated proliferation and differentiation of chondrocytes ensures the continuous elongation of the epiphyseal growth plates. The sequential changes between proliferation and differentiation are tightly regulated by secreted growth factors, which activate chondrocyte-specific transcription factors. Transcription factors that play critical roles in regulating cell-type-specific gene expression include Sox9, Gli2/3, and Runx2. The interaction of these transcription factors with general transcriptional regulators like histone-modifying enzymes provides an additional level of regulation to fine-tune the expression of target genes in different chondrocyte populations. This review will outline recent advances in the analysis of the complex transcriptional network that regulates the distinct steps of chondrocyte differentiation.


Asunto(s)
Condrocitos/fisiología , Redes Reguladoras de Genes , Placa de Crecimiento/fisiología , Osteogénesis/fisiología , Transcripción Genética/fisiología , Animales , Proteínas Morfogenéticas Óseas/fisiología , Diferenciación Celular/fisiología , Proliferación Celular , Condrocitos/citología , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Placa de Crecimiento/citología , Humanos , Ratones , Transducción de Señal , Factores de Transcripción/fisiología
20.
Matrix Biol ; 93: 43-59, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32201365

RESUMEN

Heparan sulfate (HS) regulates the activity of many signaling molecules critical for the development of endochondral bones. Even so, mice with a genetically altered HS metabolism display a relatively mild skeletal phenotype compared to the defects observed in other tissues and organs pointing to a reduced HS dependency of growth-factor signaling in chondrocytes. To understand this difference, we have investigated the glycosaminoglycan (GAG) composition in two mouse lines that produce either reduced levels of HS (Ext1gt/gt mice) or HS lacking 2-O-sulfation (Hs2st1-/- mice). Analysis by RPIP-HPLC revealed an increased level of sulfated disaccarides not affected by the mutation in both mouse lines indicating that chondrocytes attempt to restore a critical level of sulfation. In addition, in both mutant lines we also detected significantly elevated levels of CS. Size exclusion chromatography further demonstrated that Ext1gt/gt mutants produce more but shorter CS chains, while the CS chains produced by (Hs2st1-/- mice) mutants are of similar length to that of wild type littermates indicating that chondrocytes produce more rather than longer CS chains. Expression analysis revealed an upregulation of aggrecan, which likely carries most of the additionally produced CS. Together the results of this study demonstrate for the first time that not only a reduced HS synthesis but also an altered HS structure leads to increased levels of CS in mammalian tissues. Furthermore, as chondrocytes produce 100-fold more CS than HS the increased CS levels point to an active, precursor-independent mechanism that senses the quality of HS in a vast excess of CS. Interestingly, reducing the level of cell surface CS by chondroitinase treatment leads to reduced Bmp2 induced Smad1/5/9 phosphorylation. In addition, Erk phosphorylation is increased independent of Fgf18 treatment indicating that both, HS and CS, affect growth factor signaling in chondrocytes in distinct manners.


Asunto(s)
Condrocitos/citología , Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/metabolismo , N-Acetilglucosaminiltransferasas/genética , Sulfotransferasas/genética , Animales , Proliferación Celular , Células Cultivadas , Condrocitos/metabolismo , Heparitina Sulfato/química , Humanos , Ratones , Ratones Transgénicos , Mutación , Fosforilación , Cultivo Primario de Células , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA