Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Insect Biochem Physiol ; 104(3): e21691, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32410326

RESUMEN

In the present study, diel pattern in gut microbial communities in insects were evaluated. Lymantria dispar asiatica fourth instar larvae (72 ± 2 hr after molting) at noon (LdD) and midnight (LdN) were used for a comparative analysis of the gut microbial community. Ten bacterial operational taxonomic units (OTUs) were shared between LdD and LdN samples. One bacterial OTU was specific to LdD. The dominant gut microbes were OTU72 in LdD and OTU75 in LdN. A linear discriminant analysis effect size cladogram suggested that ten bacterial OTUs maintain significant differences in relative abundances between LdD and LdN. These results agreed with the discrete ellipses between LdD and LdN in principal coordinates analysis plots. Additionally, using phylogenetic investigation of communities by reconstruction of unobserved states, the gut microbial community was assigned to 23 functional terms, among which 22 exhibited significant differences between LdD and LdN. To conclude, the present study documented a diel pattern in the gut microbial community of L. dispar asiatica larvae.


Asunto(s)
Ritmo Circadiano , Microbioma Gastrointestinal/fisiología , Mariposas Nocturnas/microbiología , Animales , Bacterias/clasificación , Larva/microbiología , Mariposas Nocturnas/crecimiento & desarrollo , Filogenia
2.
Pestic Biochem Physiol ; 164: 196-202, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32284127

RESUMEN

Lymantria dispar asiatica is a globally distributed herbivorous pest. Avermectin is a highly effective, broad-spectrum insecticide. In this study, fourth instar L. dispar asiatica larvae were exposed to a LC30 dose of avermectin. The structure and function of larval gut microbial community was analyzed to examine how gut microbiota in L. dispar asiatica larvae responded to avermectin stress. Results showed that the structure and function of gut microbial community in L. dispar asiatica larvae were varied by avermectin stress. To be precise, more than half quantity of the observed Optical Taxonomic Units (OTUs) showed significantly different abundances under avermectin stress. Linear discriminant analysis effect size (LEfSe) suggested nine bacterial genera and 12 fungal genera contributed to the different gut microbial community structure in L. dispar asiatica larvae. Gut microbial function classification (PICRUSt and FUNGuild) suggested that three bacterial function categories and a fungal function guild were significantly increased, and two fungal function guilds were significantly decreased by avermectin stress. This study furthers our understanding of the physiology of L. dispar asiatica larvae under avermectin stress, and is an essential step towards future development of potential pesticide targets.


Asunto(s)
Insecticidas , Lepidópteros , Mariposas Nocturnas , Animales , Ivermectina/análogos & derivados , Larva
3.
Pestic Biochem Physiol ; 156: 72-79, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31027583

RESUMEN

Metalloenzyme SODs play important roles in insects dealing with environmental stress. Here, we cloned the Cu/ZnSOD (LdCZS) and MnSOD (LdMS) mRNA of Lymantria dispar by rapid amplification of cDNA ends (RACE). Afterwards their expression patterns were detected by quantitative real-time polymerase chain reaction (qPCR) after bioinformatic analysis. We found that both LdCZS and LdMS were widely detected in all gypsy moth larvae and all five tissues that we analyzed, and both of them were up-regulated after larvae were fed with avermectin of sublethal concentration and LC10. The LdCZS expression value are always higher than LdMS after treating with avermectin of sublethal concentrations. In addition, temporal expression profile in avermectin treated larvae showed that LdCZS expressed highest at 2nd hour, and LdMS expressed highest at 6th hour. The cuticulas transcribed LdCZS and LdMS significantly higher than heads, fat bodies, Malpighian tubes, and midguts after spraying avermectin of sublethal concentration. These results suggested that both Cu/ZnSOD and MnSOD are important antioxidant enzymes in L. dispar defensing against pesticide stress, and LdCZS always responded rapider and stronger than LdMS.


Asunto(s)
Ivermectina/análogos & derivados , Larva/metabolismo , Mariposas Nocturnas/metabolismo , Superóxido Dismutasa/metabolismo , Secuencia de Aminoácidos , Animales , Biología Computacional , ADN Complementario/genética , Ivermectina/farmacología , Larva/efectos de los fármacos , Larva/genética , Datos de Secuencia Molecular , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/genética , Plaguicidas/farmacología , Reacción en Cadena de la Polimerasa , Superóxido Dismutasa/química , Superóxido Dismutasa/genética
4.
Sci Rep ; 10(1): 22025, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33328590

RESUMEN

Little is known about the relationship between soil microbial communities and soil properties in southern boreal forests. To further our knowledge about that relationship, we compared the soil samples in southern boreal forests of the Greater Khingan Mountains-the southernmost boreal forest biome in the world. The forests can be divided into boardleaf forests dominated by birch (Betula platyphylla) or aspen (Populus davidiana) and coniferous forests dominated by larch (Larix gmelinii) or pine (Pinus sylvestris var. mongolica). Results suggested different soil microbial communities and soil properties between these southern boreal forests. Soil protease activity strongly associated with soil fungal communities in broadleaf and coniferous forests (p < 0.05), but not with soil bacterial communities (p > 0.05). Soil ammonium nitrogen and total phosphorus contents strongly associated with soil fungal and bacterial communities in broadleaf forests (p < 0.05), but not in coniferous forests (p > 0.05). Soil potassium content demonstrated strong correlations with both soil fungal and bacterial communities in broadleaf and coniferous forests (p < 0.05). These results provide evidence for different soil communities and soil properties in southern boreal forest, and further elucidate the explicit correlation between soil microbial communities and soil properties in southern boreal forests.


Asunto(s)
Bacterias/metabolismo , Hongos/fisiología , Microbiología del Suelo , Suelo/química , Taiga , China , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA