Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(1): 101477, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896393

RESUMEN

Disturbance of the dynamic balance between tyrosine phosphorylation and dephosphorylation of signaling molecules, controlled by protein tyrosine kinases and protein tyrosine phosphatases (PTPs), is known to lead to the development of cancer. While most approved targeted cancer therapies are tyrosine kinase inhibitors, PTPs have long been stigmatized as undruggable and have only recently gained renewed attention in drug discovery. One PTP target is the Src-homology 2 domain-containing phosphatase 2 (SHP2). SHP2 is implicated in tumor initiation, progression, metastasis, and treatment resistance, primarily because of its role as a signaling nexus of the extracellular signal-regulated kinase pathway, acting upstream of the small GTPase Ras. Efforts to develop small molecules that target SHP2 are ongoing, and several SHP2 allosteric inhibitors are currently in clinical trials for the treatment of solid tumors. However, while the reported allosteric inhibitors are highly effective against cells expressing WT SHP2, none have significant activity against the most frequent oncogenic SHP2 variants that drive leukemogenesis in several juvenile and acute leukemias. Here, we report the discovery of novel furanylbenzamide molecules as inhibitors of both WT and oncogenic SHP2. Importantly, these inhibitors readily cross cell membranes, bind and inhibit SHP2 under physiological conditions, and effectively decrease the growth of cancer cells, including triple-negative breast cancer cells, acute myeloid leukemia cells expressing either WT or oncogenic SHP2, and patient-derived acute myeloid leukemia cells. These novel compounds are effective chemical probes of active SHP2 and may serve as starting points for therapeutics targeting WT or mutant SHP2 in cancer.


Asunto(s)
Benzamidas , Inhibidores Enzimáticos , Leucemia Mieloide Aguda , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Benzamidas/farmacología , Carcinogénesis , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/enzimología , Oncogenes , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo
2.
Ecotoxicol Environ Saf ; 264: 115424, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37672939

RESUMEN

The Atlantic salmon (Salmo salar) population in the Baltic Sea consists of wild and hatchery-reared fish that have been released into the sea to support salmon stocks. During feeding migration, salmon migrate to different parts of the Baltic Sea and are exposed to various biotic and abiotic stressors, such as organohalogen compounds (OHCs). The effects of salmon origin (wild or hatchery-reared), feeding area (Baltic Main Basin, Bothnian Sea, and Gulf of Finland), and OHC concentration on the differences in hepatic proteome of salmon were investigated. Multi-level analysis of the OHC concentration, transcriptome, proteome, and oxidative stress biomarkers measured from the same salmon individuals were performed to find the key variables (origin, feeding area, OHC concentrations, and oxidative stress) that best account for the differences in the transcriptome and proteome between the salmon groups. When comparing wild and hatchery-reared salmon, differences were found in xenobiotic and amino acid metabolism-related pathways. When comparing salmon from different feeding areas, the amino acid and carbohydrate metabolic pathways were notably different. Several proteins found in these pathways are correlated with the concentrations of polychlorinated biphenyls (PCBs). The multi-level analysis also revealed amino acid metabolic pathways in connection with PCBs and oxidative stress variables related to glutathione metabolism. Other pathways found in the multi-level analysis included genetic information processes related to ribosomes, signaling and cellular processes related to the cytoskeleton, and the immune system, which were connected mainly to the concentrations of Polychlorinated biphenyls and Dichlorodiphenyltrichloroethane and their metabolites. These results suggest that the hepatic proteome of salmon in the Baltic Sea, together with the transcriptome, is more affected by the OHC concentrations and oxidative stress of the feeding area than the origin of the salmon.


Asunto(s)
Bifenilos Policlorados , Salmo salar , Humanos , Animales , Salmo salar/genética , Proteoma , Estrés Oxidativo , Aminoácidos
3.
Environ Sci Technol ; 54(23): 15246-15256, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33166131

RESUMEN

Hatchery-reared Atlantic salmon (Salmo salar) has been released to support the wild salmon stocks in the Baltic Sea for decades. During their feeding migration, salmon are exposed to organohalogen compounds (OHCs). Here, we investigated the OHC levels and transcriptome profiles in the liver of wild and hatchery-reared salmon collected from the Baltic main basin (BMB), the Bothnian Sea (BS), and the Gulf of Finland (GoF) and examined whether salmon origin and OHC levels contributed to the hepatic transcriptome profiles. There were no differences in the OHC concentrations between wild and reared fish but larger differences between areas. Several transcript levels were associated with non-dioxin-like polychlorinated biphenyls, polybrominated diphenylethers, chlordanes, and dichlorodiphenyltrichloroethane in a concentration-dependent manner. Between wild and reared salmon, lipid metabolism and related signaling pathways were enriched within the BMB and BS, while amino acid metabolism was altered within the GoF. When comparing the different areas, lipid metabolism, environmental stress and cell growth, and death-related pathways were enriched. Class coinertia analysis showed that the covariation in the OHC levels and the transcriptome were significantly similar. These results suggest that the hepatic transcriptomes in wild and hatchery-reared salmon are more affected by the OHC levels rather than the origin of salmon.


Asunto(s)
Salmo salar , Transcriptoma , Animales , Países Bálticos , Finlandia , Hígado , Salmo salar/genética
4.
Semin Cancer Biol ; 35: 145-53, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26297892

RESUMEN

Extracellular matrix, via its receptors the integrins, has emerged as a crucial factor in cancer development. The α2ß1 integrin is a major collagen receptor that is widely expressed and known to promote cell migration and control tissue homeostasis. Growing evidence suggests that it can be a key pathway in cancer. Recent studies have shown that α2ß1 integrin is a regulator of cancer metastasis either by promoting or inhibiting the dissemination process of cancer cells. The α2ß1 integrin signaling can also enhance tumor angiogenesis. Emerging evidence supports a role for α2ß1 integrin in cancer chemoresistance especially in hematological malignancies originating from the T cell lineage. In addition, α2ß1 integrin has been associated with cancer stem cells. In this review, we will discuss the complex role of α2ß1 integrin in these processes. Collagen is a major matrix protein of the tumor microenvironment and thus, understanding how α2ß1 integrin regulates cancer pathogenesis is likely to lead to new therapeutic approaches and agents for cancer treatment.


Asunto(s)
Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Resistencia a Antineoplásicos/genética , Integrina alfa2beta1/genética , Integrina alfa2beta1/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Animales , Movimiento Celular , Proliferación Celular , Colágeno/metabolismo , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Humanos , Integrina alfa2beta1/antagonistas & inhibidores , Terapia Molecular Dirigida , Invasividad Neoplásica , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Células Madre Neoplásicas/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Transducción de Señal
5.
Proc Natl Acad Sci U S A ; 109(8): 3018-23, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22323579

RESUMEN

Glioblastoma, the most common primary malignant cancer of the brain, is characterized by rapid tumor growth and infiltration of tumor cells throughout the brain. These traits cause glioblastomas to be highly resistant to current therapies with a resultant poor prognosis. Although aberrant oncogenic signaling driven by signature genetic alterations, such as EGF receptor (EGFR) gene amplification and mutation, plays a major role in glioblastoma pathogenesis, the responsible downstream mechanisms remain less clear. Here, we report that EGFRvIII (also known as ΔEGFR and de2-7EGFR), a constitutively active EGFR mutant that is frequently co-overexpressed with EGFR in human glioblastoma, promotes tumorigenesis through Src family kinase (SFK)-dependent phosphorylation of Dock180, a guanine nucleotide exchange factor for Rac1. EGFRvIII induces phosphorylation of Dock180 at tyrosine residue 722 (Dock180(Y722)) and stimulates Rac1-signaling, glioblastoma cell survival and migration. Consistent with this being causal, siRNA knockdown of Dock180 or expression of a Dock180(Y722F) mutant inhibits each of these EGFRvIII-stimulated activities. The SFKs, Src, Fyn, and Lyn, induce phosphorylation of Dock180(Y722) and inhibition of these SFKs by pharmacological inhibitors or shRNA depletion markedly attenuates EGFRvIII-induced phosphorylation of Dock180(Y722), Rac1 activity, and glioblastoma cell migration. Finally, phosphorylated Dock180(Y722) is coexpressed with EGFRvIII and phosphorylated Src(Y418) in clinical specimens, and such coexpression correlates with an extremely poor survival in glioblastoma patients. These results suggest that targeting the SFK-p-Dock180(Y722)-Rac1 signaling pathway may offer a novel therapeutic strategy for glioblastomas with EGFRvIII overexpression.


Asunto(s)
Transformación Celular Neoplásica/patología , Receptores ErbB/metabolismo , Glioblastoma/enzimología , Glioblastoma/patología , Fosfotirosina/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Familia-src Quinasas/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Movimiento Celular , Supervivencia Celular , Humanos , Datos de Secuencia Molecular , Fosforilación , Pronóstico , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Proteínas de Unión al GTP rac/química , Proteína de Unión al GTP rac1/metabolismo
6.
Environ Sci Technol ; 48(23): 13969-77, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25356801

RESUMEN

The fitness and reproductive output of fishes can be affected by environmental disturbances. In this study, transcriptomics and label-free proteomics were combined to investigate Atlantic salmon (Salmo salar) sampled from three different field locations within the Baltic Sea (Baltic Main Basin (BMB), Gulf of Finland (GoF), and Bothnian Sea (BS)) during marine migration. The expression of several stress related mRNAs and proteins of xenobiotic metabolism, oxidative stress, DNA damage, and cell death were increased in salmon from GoF compared to salmon from BMB or BS. Respiratory electron chain and ATP synthesis related gene ontology-categories were upregulated in GoF salmon, whereas those associated with RNA processing and synthesis, translation, and protein folding decreased. Differences were seen also in metabolism and immune function related gene expression. Comparisons of the transcriptomic and proteomic profiles between salmon from GoF and salmon from BMB or BS suggest environmental stressors, especially exposure to contaminants, as a main explanation for differences. Salmon feeding in GoF are thus "disturbed by hazardous substances". The results may also be applied in evaluating the conditions of pelagic ecosystems in the different parts of Baltic Sea.


Asunto(s)
Migración Animal/fisiología , Conducta Alimentaria/fisiología , Regulación de la Expresión Génica/fisiología , Salmo salar/genética , Salmo salar/fisiología , Distribución Animal/fisiología , Animales , Ambiente , Femenino , Océanos y Mares , Estrés Oxidativo , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducción
7.
J Phycol ; 50(4): 753-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26988459

RESUMEN

We performed laboratory experiments to investi-gate whether the synthesis of the antioxidants α-tocopherol (vitamin E) and ß-carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena, Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta, Prorocentrum cordatum, and Rhodomonas salina were incubated at different tempe-ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P. tricornutum KAC 37 and D. tertiolecta SCCAP K-0591, both good producers of this compound, α-tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (Fv /Fm ). On the other hand, ß-carotene accumulation was positively affected by higher Fv /Fm in N. spumigena KAC 7, P. tricornutum KAC 37, D. tertiolecta SCCAP K-0591 and R. salina SCCAP K-0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While α-tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, ß-carotene performs immediate photo-oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short-term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since α-tocopherol and ß-carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo-synthetic organisms, and are required by higher trophic levels through dietary intake, regime shifts in the phytoplankton as a result of large-scale environmental changes, such as climate change, may have serious consequences for aquatic food webs.

8.
Cancers (Basel) ; 16(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38254907

RESUMEN

Acute leukemia is a particularly problematic collection of hematological cancers, and, while somewhat rare, the survival rate of patients is typically abysmal without bone marrow transplantation. Furthermore, traditional chemotherapies used as standard-of-care for patients cause significant side effects. Understanding the evolution of leukemia to identify novel targets and, therefore, drug treatment regimens is a significant medical need. Genomic rearrangements and other structural variations (SVs) have long been known to be causative and pathogenic in multiple types of cancer, including leukemia. These SVs may be involved in cancer initiation, progression, clonal evolution, and drug resistance, and a better understanding of SVs from individual patients may help guide therapeutic options. Here, we show the utilization of optical genome mapping (OGM) to detect known and novel SVs in the samples of patients with leukemia. Importantly, this technology provides an unprecedented level of granularity and quantitation unavailable to other current techniques and allows for the unbiased detection of novel SVs, which may be relevant to disease pathogenesis and/or drug resistance. Coupled with the chemosensitivities of these samples to FDA-approved oncology drugs, we show how an impartial integrative analysis of these diverse datasets can be used to associate the detected genomic rearrangements with multiple drug sensitivity profiles. Indeed, an insertion in the gene MUSK is shown to be associated with increased sensitivity to the clinically relevant agent Idarubicin, while partial tandem duplication events in the KMT2A gene are related to the efficacy of another frontline treatment, Cytarabine.

9.
Bioorg Med Chem Lett ; 23(14): 4253-7, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23743278

RESUMEN

We recently reported the systematic ligand-based rational design and synthesis of monovalent Smac mimetics that bind preferentially to the BIR2 domain of the anti-apoptotic protein XIAP. Expanded structure-activity relationship (SAR) studies around these peptidomimetics led to compounds with significantly improved selectivity (>60-fold) for the BIR2 domain versus the BIR3 domain of XIAP. The potent and highly selective IAP antagonist 8q (ML183) sensitized TRAIL-resistant prostate cancer cells to apoptotic cell death, highlighting the merit of this probe compound as a valuable tool to investigate the biology of XIAP.


Asunto(s)
Materiales Biomiméticos/síntesis química , Diseño de Fármacos , Oligopéptidos/síntesis química , Proteína Inhibidora de la Apoptosis Ligada a X/antagonistas & inhibidores , Sitios de Unión , Materiales Biomiméticos/química , Materiales Biomiméticos/toxicidad , Línea Celular Tumoral , Supervivencia Celular , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Oligopéptidos/química , Oligopéptidos/toxicidad , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
10.
Sci Rep ; 13(1): 1830, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759678

RESUMEN

Diet has a key role in the homeostasis of the gut microenvironment, influencing the microbiome, the gut barrier, host immunity and gut physiology. Yet, there is little information on the role of early diet in the onset of inflammatory gastrointestinal disorders later in life, especially in dogs. Therefore, the aim of the present cross-sectional, epidemiological study with longitudinal data, was to explore associations of companion dogs' early life diet style and food items with owner-reported chronic enteropathy (CE) incidence in later life. Food frequency questionnaire data from Finnish companion dogs was analyzed using principal component analysis and logistic regression. We found that feeding a non-processed meat-based diet and giving the dog human meal leftovers and table scraps during puppyhood (2-6 months) and adolescence (6-18 months) were protective against CE later in life. Especially raw bones and cartilage as well as leftovers and table scraps during puppyhood and adolescence, and berries during puppyhood were associated with less CE. In contrast, feeding an ultra-processed carbohydrate-based diet, namely dry dog food or "kibble" during puppyhood and adolescence, and rawhides during puppyhood were significant risk factors for CE later in life.


Asunto(s)
Enfermedades de los Perros , Enfermedades Inflamatorias del Intestino , Animales , Perros , Humanos , Adolescente , Estudios Transversales , Incidencia , Dieta/veterinaria , Frutas , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/etiología
11.
J Vet Intern Med ; 37(3): 1100-1110, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025060

RESUMEN

BACKGROUND: Altered trace element status is associated with epilepsy in humans and dogs with idiopathic epilepsy (IE). OBJECTIVES: Compare hair element concentrations in epileptic and healthy dogs. ANIMALS: Sixty-three dogs with IE (53 treated, 10 untreated) and 42 controls. METHODS: Case-control study using ICP-MS to determine hair calcium, magnesium, phosphorus, sodium, potassium, iron, copper, manganese, zinc, selenium, chromium, lead, mercury, cadmium, arsenic, aluminum, and nickel concentration. Groups were compared using nonparametric tests. Results were controlled for diet, sex, age, and hair color using generalized linear mixed models. RESULTS: Compared to healthy controls, dogs with IE had lower hair phosphorus (mean ± SD; IE: 286.19 ± 69.62 µg/g, healthy: 324.52 ± 58.69 µg/g; P = .001), higher hair copper (IE: 10.97 ± 3.51 µg/g, healthy: 8.41 ± 1.27 µg/g; P < .001), zinc (IE: 158.25 ± 19.64 µg/g, healthy: 144.76 ± 32.18 µg/g; P < .001), copper/zinc ratio (IE: 0.07 ± 0.02, healthy: 0.06 ± 0.01; P = .003), selenium (IE: 1.65 ± 0.43 µg/g, healthy: 0.94 ± 0.73 µg/g; P < .001), and arsenic (IE: 0.40 ± 0.78 µg/g, healthy: 0.05 ± 0.08 µg/g; P < .001). When comparing treated and untreated epileptic dogs with healthy dogs, the differences in phosphorus and selenium remained significant for both groups, whereas the differences in copper, zinc, and arsenic were significant only for treated dogs. Potassium bromide treatment was strongly associated with high hair arsenic (P = .000). CONCLUSIONS AND CLINICAL IMPORTANCE: Altered trace element status could be involved in the pathophysiology of IE in dogs. Antiseizure drugs might affect trace element and arsenic metabolism.


Asunto(s)
Arsénico , Enfermedades de los Perros , Epilepsia , Selenio , Oligoelementos , Humanos , Perros , Animales , Cobre/metabolismo , Arsénico/toxicidad , Arsénico/metabolismo , Estudios de Casos y Controles , Zinc , Fósforo , Cabello/metabolismo , Epilepsia/veterinaria , Enfermedades de los Perros/inducido químicamente , Enfermedades de los Perros/metabolismo
12.
Front Vet Sci ; 10: 1227437, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781290

RESUMEN

Introduction: Epilepsy is a serious and common neurological condition in dogs, despite the wide number of antiepileptic drugs available, in approximately one third of the patients, epilepsy remains unsatisfactorily controlled. We aim to analyze whether feeding dietary fat sources during puppyhood was associated with canine epilepsy in adulthood. Methods: A nested case-control study was compiled from the validated DogRisk food frequency questionnaire (DogRisk FFQ). DogRisk FFQ collected feeding, disease, and background data about the dog. The study sample consisted of 108 owner-reported epileptic cases and 397 non-epileptic controls. Each case was matched with up to four controls for the key confounding factors of sex, breed, and age. We analyzed associations between feeding as a puppy and owner-reported epilepsy as an adult dog using Cox regression. We tested 55 different food variables. Results: We found that feeding fish fat from dietary sources at least once a week during puppyhood was inversely associated with epilepsy in later life in the unadjusted analysis [OR 0.46 (95% CI 0.25-0.83), p=0.01], while when adjusting for keeping conditions and dog characteristics the association was [OR 0.45 (95% CI 0.23-0.88), p=0.02]. When adjusted for keeping conditions, dog characteristics, and other feeding factors, the association was of similar magnitude but not significance [OR 0.56 (95% CI 0.27-1.15), p=0.12]. Discussion: The study indicates possible protective associations of feeding the dog with dietary sources of fish fat against epilepsy, although the result could be confounded by other feeding factors. Findings are compatible with current knowledge regarding the role of omega-3 fatty acids and ketogenic diet, a low carbohydrate, high fat diet as supportive treatments of epilepsy. As our findings are based on observations, we suggest the possibility of causality but do not prove it. Dietary intervention studies should now be conducted to confirm our findings.

13.
Front Vet Sci ; 10: 1186131, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026629

RESUMEN

Introduction: Otitis in dogs is often chronic while local treatment primarily consists of flushing, antibiotics, and/or antifungals. We were interested in finding early life variables that associate with otitis later in life, preferably some that could be modified. Methods: A cross-sectional hypothesis-driven study with longitudinal data was performed to search for associations between pre- and postnatal exposures, and the incidence of owner-reported otitis in dogs at over 1 year of age. The multivariate logistic regression analysis study included data from 3,064 dogs and explored 26 different early life variables at four early life stages: prenatal, neonatal, postnatal, and puppyhood. We compared two feeding patterns, a non-processed meat-based diet (NPMD, raw) and an ultra-processed carbohydrate-based diet (UPCD, dry). Results: We report that eating a NPMD diet significantly decreased the risk of otitis later in life, while eating a UPCD diet significantly increased the risk. This was seen in different life stages of mother or puppy: The maternal diet during pregnancy (p=0.011) and the puppies' diet from 2 to 6 months of age (p=0.019) were both significantly associated with otitis incidence later in life, whereas the puppies' first solid diet, was associated in the same way, but did not reach significance (p=0.072). Also, analyzing food ratios showed that when puppies were consuming >25% of their food as NPMD it significantly decreased their incidence of otitis later in life, while a ratio of >75% UPCD in their diet significantly increased their risk of otitis. Also, if the dog was born in the current family, was exposed to sunlight for more than 1 hour daily, and was raised on a dirt floor during puppyhood, there was a lower risk of otitis development later in life. Discussion: The findings only suggest causality, and further studies are required. However, we propose that veterinarians, breeders, and owners can impact otitis risk by modifying factors such as diet and environment.

14.
Nat Cell Biol ; 7(8): 797-807, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16025104

RESUMEN

The evolutionarily conserved DOCK180 protein has an indispensable role in cell migration by functioning as an exchange factor for Rac GTPase via its DOCK homology region (DHR)-2 domain. We report here that the conserved DHR-1 domain also has an important signalling role. A form of DOCK180 that lacks DHR-1 fails to promote cell migration, although it is capable of inducing Rac GTP-loading. The DHR-1 domain interacts with PtdIns(3,4,5)P(3) in vitro and in vivo, and mediates the DOCK180 signalling complex localization at sites of PtdIns(3,4,5)P(3) accumulation in the cell's leading edge. A form of DOCK180 in which the DHR-1 domain has been replaced by a canonical PtdIns(3,4,5)P(3)-binding pleckstrin homology domain is fully functional at inducing cell elongation and migration, suggesting that the main function of DHR-1 is to bind PtdIns(3,4,5)P(3). These results demonstrate that DOCK180, via its DHR-1 and DHR-2 domains, couples PtdIns(3,4,5)P(3) signalling to Rac GTP-loading, which is essential for directional cell movement.


Asunto(s)
Movimiento Celular/fisiología , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP rac/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Sitios de Unión/genética , Células CHO , Línea Celular , Membrana Celular/metabolismo , Movimiento Celular/genética , Forma de la Célula/genética , Cricetinae , Cricetulus , Humanos , Ratones , Complejos Multiproteicos/metabolismo , Mutación , Células 3T3 NIH , Unión Proteica , Transporte de Proteínas/fisiología , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-crk , Transfección , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo
15.
BMC Biol ; 9: 73, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22034875

RESUMEN

BACKGROUND: The focal adhesion protein p130Cas (Cas) activates multiple intracellular signaling pathways upon integrin or growth factor receptor ligation. Full-length Cas frequently promotes cell survival and migration, while its C-terminal fragment (Cas-CT) produced upon intracellular proteolysis is known to induce apoptosis in some circumstances. Here, we have studied the putative role of Cas in regulating cell survival and death pathways upon proteasome inhibition. RESULTS: We found that Cas-/- mouse embryonic fibroblasts (MEFs), as well as empty vector-transfected Cas-/- MEFs (Cas-/- (EV)) are significantly resistant to cell death induced by proteasome inhibitors, such as MG132 and Bortezomib. As expected, wild-type MEFs (WT) and Cas-/- MEFs reconstituted with full-length Cas (Cas-FL) were sensitive to MG132- and Bortezomib-induced apoptosis that involved activation of a caspase-cascade, including Caspase-8. Cas-CT generation was not required for MG132-induced cell death, since expression of cleavage-resistant Cas mutants effectively increased sensitivity of Cas-/- MEFs to MG132. At the present time, the domains in Cas and the downstream pathways that are required for mediating cell death induced by proteasome inhibitors remain unknown. Interestingly, however, MG132 or Bortezomib treatment resulted in activation of autophagy in cells that lacked Cas, but not in cells that expressed Cas. Furthermore, autophagy was found to play a protective role in Cas-deficient cells, as inhibition of autophagy either by chemical or genetic means enhanced MG132-induced apoptosis in Cas-/- (EV) cells, but not in Cas-FL cells. Lack of Cas also contributed to resistance to the DNA-damaging agent Doxorubicin, which coincided with Doxorubicin-induced autophagy in Cas-/- (EV) cells. Thus, Cas may have a regulatory role in cell death signaling in response to multiple different stimuli. The mechanisms by which Cas inhibits induction of autophagy and affects cell death pathways are currently being investigated. CONCLUSION: Our study demonstrates that Cas is required for apoptosis that is induced by proteasome inhibition, and potentially by other death stimuli. We additionally show that Cas may promote such apoptosis, at least partially, by inhibiting autophagy. This is the first demonstration of Cas being involved in the regulation of autophagy, adding to the previous findings by others linking focal adhesion components to the process of autophagy.


Asunto(s)
Proteína Sustrato Asociada a CrK/metabolismo , Fibroblastos/enzimología , Inhibidores de Proteasoma , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Caspasas/metabolismo , Proteína Sustrato Asociada a CrK/deficiencia , Citoprotección/efectos de los fármacos , Doxorrubicina/farmacología , Embrión de Mamíferos/citología , Activación Enzimática/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Leupeptinas/farmacología , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína Sequestosoma-1 , Transducción de Señal/efectos de los fármacos
16.
Autophagy Rep ; 1(1): 38-41, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35647611

RESUMEN

Cell detachment from the extracellular matrix (ECM) typically promotes cell death via a form of apoptosis known as anoikis. However, in tumor cells, detachment can also induce cell survival, utilizing a process known as macroautophagy/autophagy, which involves degradation and removal of apoptotic proteins as well as rewiring of metabolic pathways so that cells can survive under stress. The crosstalk between the competing processes of anoikis and autophagy is only partially understood but may be critical for the design of multi-drug therapeutic strategies. Here, we summarize our recent studies, which reveal a direct regulatory link between a major mediator of cell survival in adherent cells, the ECM-integrin-activated dual tyrosine kinase complex of SRC and PTK2/FAK, and a major regulator of cell metabolism and autophagy, AMP-activated protein kinase (AMPK). We identify a novel SRC phosphorylation site on AMPK and demonstrate that this phosphorylation event plays key roles in AMPK regulation, autophagy induction, and cell survival.

17.
Ecol Evol ; 12(2): e8594, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35222966

RESUMEN

The marine ecosystems are under severe climate change-induced stress globally. The Baltic Sea is especially vulnerable to ongoing changes, such as warming. The aim of this study was to measure eco-physiological responses of a key copepod species to elevated temperature in an experiment, and by collecting field samples in the western Gulf of Finland. The potential trade-off between reproductive output and oxidative balance in copepods during thermal stress was studied by incubating female Acartia sp. for reproduction rate and oxidative stress measurements in ambient and elevated temperatures. Our field observations show that the glutathione cycle had a clear response in increasing stress and possibly had an important role in preventing oxidative damage: Lipid peroxidation and ratio of reduced and oxidized glutathione were negatively correlated throughout the study. Moreover, glutathione-s-transferase activated in late July when the sea water temperature was exceptionally high and Acartia sp. experienced high oxidative stress. The combined effect of a heatwave, increased cyanobacteria, and decreased dinoflagellate abundance may have caused larger variability in reproductive output in the field. An increase of 7°C had a negative effect on egg production rate in the experiment. However, the effect on reproduction was relatively small, implying that Acartia sp. can tolerate warming at least within the temperature range of 9-16°C. However, our data from the experiment suggest a link between reproductive success and oxidative stress during warming, shown as a significant combined effect of temperature and catalase on egg production rate.

18.
Vet Res Commun ; 46(1): 261-275, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34741715

RESUMEN

Obtaining correct amounts of essential elements, and avoiding toxic metals are key factors in dog health. Through analyzing major and trace elements in hair and blood of 50 healthy companion dogs using ICP-MS, we study their associations with dog characteristics and diet, hypothesizing that eating the same diet long-term results in strong correlations between hair and blood element concentrations, and that dog characteristics and diet affect element status. The correlation between hair and blood was significant for Hg (R = 0.601, p = 0.000) and Pb (R = 0.384, p = 0.010). The following associations were significant (p < 0.05): Dark hair had higher Ca and Mg compared to light hair. Females had higher hair Zn, blood Mn, and blood As compared to males. Blood Mn and Se increased, while blood Pb decreased with age. Raw diet fed dogs had higher hair Zn and Se compared to dry or mixed diet fed dogs, and lower blood Mn compared to dry diet fed dogs. Dry and mixed diet fed dogs had higher blood Cd compared to raw diet fed dogs. Mixed diet fed dogs had higher hair Ca and Mg compared to raw or dry diet fed dogs, and higher hair Pb compared to dry diet fed dogs. Wild game consumption was associated with higher blood Pb, and rice consumption with higher blood As. In conclusion, hair provides an alternative for assessing Hg and Pb exposure, and major and trace elements status is affected by hair color, sex, age, and diet.


Asunto(s)
Oligoelementos , Animales , Dieta/veterinaria , Perros , Femenino , Cabello , Masculino
19.
Cell Signal ; 89: 110170, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34673141

RESUMEN

Autophagy is a multi-step process regulated in part by AMP-activated protein kinase (AMPK). Phosphorylation of threonine 172 on the AMPK α-subunit enhances AMPK kinase activity, resulting in activation of downstream signaling. Integrin-mediated cell adhesion activates Src/ Focal Adhesion Kinase (FAK) signaling complex, which regulates multiple cellular processes including cell survival. We show here that Src signaling leads to direct phosphorylation of the AMPK-α subunit on a novel site, tyrosine 179, resulting in suppression of AMPK-T172 phosphorylation and autophagy upon integrin-mediated cell adhesion. By using chemical inhibitors, genetic cell models and targeted mutagenesis, we confirm an important role for Src and FAK in suppressing AMPK signaling and autophagy induced by various additional stimuli, including glucose starvation. Furthermore, we found that autophagy suppression by hydroxychloroquine promotes apoptosis in a cancer cell model that had been treated with Src inhibitors. Our findings reveal a link between the Src/ FAK complex and AMPK/ autophagy regulation, which may play an important role in the maintenance of normal cellular homeostasis and tumor progression.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Familia-src Quinasas , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Adhesión Celular , Quinasa 1 de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Fosforilación , Familia-src Quinasas/metabolismo
20.
Front Vet Sci ; 9: 1066851, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686192

RESUMEN

Background: Idiopathic epilepsy (IE) is the most common neurological disease in dogs. Multiple genes and environmental factors interact to cause clinical signs, although the pathogenesis remains poorly understood. Extensive evidence from recent decades shows that trace elements play a role in epilepsy in humans, and recently it was shown for the first time that also dogs with IE have altered trace element status. On the other hand, toxic metals may cause seizures but research on their role in canine IE is lacking. Therefore, we aimed to investigate trace element and toxic metal concentrations in whole blood from dogs that had been diagnosed with IE and compare them to those of healthy dogs. Materials and methods: Whole blood concentrations of trace elements (selenium, zinc, copper, manganese, iron, and chromium) and toxic metals (arsenic, cadmium, mercury, and lead) were analyzed from 19 dogs that had been diagnosed with IE by board-certified neurologists and 19 healthy control dogs using inductively coupled plasma mass spectrometry. The concentrations in study and control group were compared using the Mann-Whitney U test. Results: Dogs diagnosed with IE had significantly higher blood copper concentration (P = 0.007), higher copper/zinc ratio (P = 0.04), and higher selenium concentration (P < 0.001), as well as lower chromium concentration (P = 0.01) when compared to healthy dogs. Treatment of IE with potassium bromide was associated with a significant elevation in blood arsenic concentration (P = 0.01). Conclusion: In conclusion, the present results support the role of altered trace element status in dogs diagnosed with IE and suggest that copper, selenium, and chromium may be involved in the pathogenesis of canine epilepsy or seizures. The results also suggest that potassium bromide may alter arsenic metabolism in dogs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA