Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Infect Public Health ; 17(2): 245-253, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141544

RESUMEN

BACKGROUND: COVID-19 has killed over 6 million people worldwide, making it the worst global health disaster since the 1918 influenza pandemic. Experts have worked to establish the source, track and analyse the disease, and produce treatment and preventative guidelines. Inactivated vaccines have little evidence of efficacy compared to mRNA and adenoviral vector vaccines; however, three doses of both mRNA and inactivated vaccines appear to provide significant and lasting protection against severe disease and mortality. This study examines inactivated vaccine effectiveness data by disease status, age, gender, primary immunisation, booster doses, and SARS-CoV2 virus types. METHODS: We conducted a quantitative epidemiological meta-analysis study to assess the vaccine effectiveness of inactivated COVID-19 vaccines. Data extraction was performed on the selected studies, and data analysis was conducted using a random-effects model to determine consolidated assessments of vaccine effectiveness. Subgroup analyses were conducted for gender, age, disease level, and vaccine status, and sensitivity analyses were conducted to assess the robustness of the results. RESULTS: The overall effect size of inactivated COVID-19 vaccinations was statistically significant (p-value<0.05), suggesting that complete vaccination should be the primary method of vaccination. Partial vaccination was associated with lower levels of vaccine effectiveness (70.18 95% CI 57.33-83.02) than complete vaccination (79.52 95% CI 67.88-91.71)) and booster vaccination (84.22 95% CI 74.34-94.10), suggesting that it is essential to finish the recommended vaccine series and receive booster doses. Fig.-3: Partially vaccinated individuals showed a vaccine effect size of 70.18 (95% CI 57.33-83.02), indicating that the vaccine was moderately effective in preventing COVID-19 among this group. Fully vaccinated individuals showed a vaccine effect size of 79.52 (95% CI 67.88-91.71), indicating a higher level of vaccine effectiveness. Finally, booster-vaccinated individuals showed a vaccine effect size of 84.22 (95% CI 74.34-94.10), indicating the highest level of vaccine effectiveness. CONCLUSION: Inactivated COVID-19 vaccines are highly effective in preventing COVID-19, and complete vaccination and booster vaccination are associated with higher levels of vaccine effectiveness compared to partial vaccination. These findings highlight the importance of completing the recommended vaccine series and receiving booster doses to provide greater protection against COVID-19.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , ARN Viral , SARS-CoV-2 , ARN Mensajero , Vacunas de Productos Inactivados
2.
Shock ; 59(1): 58-65, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36378234

RESUMEN

ABSTRACT: Background: Patients with severe coronavirus disease 2019 (COVID-19) are at an increased risk of acute respiratory distress syndrome and mortality. This is due to the increased levels of pro-inflammatory cytokines that amplify downstream pathways that are controlled by immune regulators. Objective: This study aimed to investigate the association between cytokine genetic variants, cytokine serum levels/profiles, and disease severity in critically and noncritically ill COVID-19 patients. Methods: This cross-sectional study recruited 646 participants who tested positive for severe acute respiratory syndrome coronavirus 2 from six collection sites across the United Arab Emirates. Medical files were accessed to retrieve clinical data. Blood samples were collected from all participants. Patients were divided into two clinical groups, noncritical (n = 453) and critical (n = 193), according to World Health Organization classification guidelines for COVID-19 patients. Cytokine analyses were conducted on serum of a subset of the cohort, specifically on 426 participants (noncritical, 264; critical, 162). Candidate gene analyses of 33 cytokine-related genes (2,836 variants) were extracted from a genome-wide association study to identify genetic variants with pleiotropic effects on a specific cytokine and the severity of COVID-19 disease. Results: Age, body mass index (BMI), and pre-existing medical conditions were found to be significant risk factors that contribute to COVID-19 disease severity. After correcting for age, sex, and BMI, IP-10 ( P < 0.001), IFN ( P = 0.001), IL-6 ( P < 0.001), and CXCL-16 ( P < 0.001) serum levels were significantly higher among critical COVID-19 cases, when compared with noncritically ill patients. To investigate if the genetic variants involved in the serum cytokine levels are associated with COVID-19 severity, we studied several genes. Single nucleotide polymorphisms in IL6 (rs1554606; odd ratio (OR) G = 0.67 [0.66, 0.68]; P = 0.017), IFNG (rs2069718; OR G = 0.63 [0.62, 0.64]; P = 0.001), MIP (rs799187; OR A = 1.69 [1.66, 1.72]; P = 0.034), and CXCL16 (rs8071286; OR A = 1.42 [1.41, 1.44]; P = 0.018) were found to be associated with critically ill patients. Polymorphisms in the CXCL10 , CCL2 , IL1 , CCL7 , and TNF genes were not associated with the COVID-19 critical phenotype. The genotypes of IL-6 (gene, IL6 [7p15.3]) and CXCL-16 (gene, CXCL16 [17p13.2]) were significantly associated with the serum levels of the respective cytokine in critical cases of COVID-19. Conclusion: Data obtained from measuring cytokine levels and genetic variant analyses suggest that IL-6 and CXCL-16 could potentially be used as potential biomarkers for monitoring disease progression of COVID-19 patients. The findings in this study suggest that specific cytokine gene variants correlate with serum levels of the specific cytokine. These genetic variants could be of assistance in the early identification of high-risk patients on admission to the clinic to improve the management of COVID-19 patients and other infectious diseases.


Asunto(s)
COVID-19 , Citocinas , Humanos , Citocinas/genética , COVID-19/genética , Interleucina-6/genética , Estudio de Asociación del Genoma Completo , Estudios Transversales
3.
PLoS One ; 17(3): e0264682, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35235585

RESUMEN

Global and local whole genome sequencing of SARS-CoV-2 enables the tracing of domestic and international transmissions. We sequenced Viral RNA from 37 sampled Covid-19 patients with RT-PCR-confirmed infections across the UAE and developed time-resolved phylogenies with 69 local and 3,894 global genome sequences. Furthermore, we investigated specific clades associated with the UAE cohort and, their global diversity, introduction events and inferred domestic and international virus transmissions between January and June 2020. The study comprehensively characterized the genomic aspects of the virus and its spread within the UAE and identified that the prevalence shift of the D614G mutation was due to the later introductions of the G-variant associated with international travel, rather than higher local transmissibility. For clades spanning different emirates, the most recent common ancestors pre-date domestic travel bans. In conclusion, we observe a steep and sustained decline of international transmissions immediately following the introduction of international travel restrictions.


Asunto(s)
COVID-19/transmisión , COVID-19/virología , Control de Infecciones/métodos , SARS-CoV-2/genética , Viaje/estadística & datos numéricos , Adolescente , Adulto , Anciano , COVID-19/epidemiología , Niño , Preescolar , Femenino , Genoma Viral/genética , Humanos , Masculino , Persona de Mediana Edad , Tipificación Molecular/métodos , Mutación , Filogenia , ARN Viral , SARS-CoV-2/aislamiento & purificación , Análisis de Secuencia de ARN , Enfermedad Relacionada con los Viajes , Emiratos Árabes Unidos/epidemiología , Secuenciación Completa del Genoma , Adulto Joven
4.
Sci Rep ; 12(1): 14669, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038563

RESUMEN

Since the declaration of SARS-CoV-2 outbreak as a pandemic, the United Arab Emirates (UAE) public health authorities have adopted strict measures to reduce transmission as early as March 2020. As a result of these measures, flight suspension, nationwide RT-PCR and surveillance of viral sequences were extensively implemented. This study aims to characterize the epidemiology, transmission pattern, and emergence of variants of concerns (VOCs) and variants of interests (VOIs) of SARS-CoV-2 in the UAE, followed by the investigation of mutations associated with hospitalized cases. A total of 1274 samples were collected and sequenced from all seven emirates between the period of 25 April 2020 to 15 February 2021. Phylogenetic analysis demonstrated multiple introductions of SARS-CoV-2 into the UAE in the early pandemic, followed by a local spread of root clades (A, B, B.1 and B.1.1). As the international flight resumed, the frequencies of VOCs surged indicating the January peak of positive cases. We observed that the hospitalized cases were significantly associated with the presence of B.1.1.7 (p < 0.001), B.1.351 (p < 0.001) and A.23.1 (p = 0.009). Deceased cases are more likely to occur in the presence of B.1.351 (p < 0.001) and A.23.1 (p = 0.022). Logistic and ridge regression showed that 51 mutations are significantly associated with hospitalized cases with the highest proportion originated from S and ORF1a genes (31% and 29% respectively). Our study provides an epidemiological insight of the emergence of VOCs and VOIs following the borders reopening and worldwide travels. It provides reassurance that hospitalization is markedly more associated with the presence of VOCs. This study can contribute to understand the global transmission of SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Genómica , Humanos , Filogenia , SARS-CoV-2/genética , Emiratos Árabes Unidos/epidemiología
5.
Front Microbiol ; 12: 761067, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803986

RESUMEN

The interplay between the compositional changes in the gastrointestinal microbiome, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) susceptibility and severity, and host functions is complex and yet to be fully understood. This study performed 16S rRNA gene-based microbial profiling of 143 subjects. We observed structural and compositional alterations in the gut microbiota of the SARS-CoV-2-infected group in comparison to non-infected controls. The gut microbiota composition of the SARS-CoV-2-infected individuals showed an increase in anti-inflammatory bacteria such as Faecalibacterium (p-value = 1.72 × 10-6) and Bacteroides (p-value = 5.67 × 10-8). We also revealed a higher relative abundance of the highly beneficial butyrate producers such as Anaerostipes (p-value = 1.75 × 10-230), Lachnospiraceae (p-value = 7.14 × 10-65), and Blautia (p-value = 9.22 × 10-18) in the SARS-CoV-2-infected group in comparison to the control group. Moreover, phylogenetic investigation of communities by reconstructing unobserved state (PICRUSt) functional prediction analysis of the 16S rRNA gene abundance data showed substantial differences in the enrichment of metabolic pathways such as lipid, amino acid, carbohydrate, and xenobiotic metabolism, in comparison between both groups. We discovered an enrichment of linoleic acid, ether lipid, glycerolipid, and glycerophospholipid metabolism in the SARS-CoV-2-infected group, suggesting a link to SARS-CoV-2 entry and replication in host cells. We estimate the major contributing genera to the four pathways to be Parabacteroides, Streptococcus, Dorea, and Blautia, respectively. The identified differences provide a new insight to enrich our understanding of SARS-CoV-2-related changes in gut microbiota, their metabolic capabilities, and potential screening biomarkers linked to COVID-19 disease severity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA