Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33431564

RESUMEN

Major declines in insect biomass and diversity, reviewed here, have become obvious and well documented since the end of World War II. Here, we conclude that the spread and intensification of agriculture during the past half century is directly related to these losses. In addition, many areas, including tropical mountains, are suffering serious losses because of climate change as well. Crops currently occupy about 11% of the world's land surface, with active grazing taking place over an additional 30%. The industrialization of agriculture during the second half of the 20th century involved farming on greatly expanded scales, monoculturing, the application of increasing amounts of pesticides and fertilizers, and the elimination of interspersed hedgerows and other wildlife habitat fragments, all practices that are destructive to insect and other biodiversity in and near the fields. Some of the insects that we are destroying, including pollinators and predators of crop pests, are directly beneficial to the crops. In the tropics generally, natural vegetation is being destroyed rapidly and often replaced with export crops such as oil palm and soybeans. To mitigate the effects of the Sixth Mass Extinction event that we have caused and are experiencing now, the following will be necessary: a stable (and almost certainly lower) human population, sustainable levels of consumption, and social justice that empowers the less wealthy people and nations of the world, where the vast majority of us live, will be necessary.


Asunto(s)
Agricultura/historia , Biodiversidad , Cambio Climático , Extinción Biológica , Insectos , Animales , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Historia Antigua , Historia Medieval , Humanos
2.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33431565

RESUMEN

Moths are the most taxonomically and ecologically diverse insect taxon for which there exist considerable time-series abundance data. There is an alarming record of decreases in moth abundance and diversity from across Europe, with rates varying markedly among and within regions. Recent reports from Costa Rica reveal steep cross-lineage declines of caterpillars, while other sites (Ecuador and Arizona, reported here) show no or only modest long-term decreases over the past two decades. Rates of decline for dietary and ecological specialists are steeper than those for ecologically generalized taxa. Additional traits commonly associated with elevated risks include large wingspans, small geographic ranges, low dispersal ability, and univoltinism; taxa associated with grasslands, aridlands, and nutrient-poor habitats also appear to be at higher risk. In temperate areas, many moth taxa limited historically by abiotic factors are increasing in abundance and range. We regard the most important continental-scale stressors to include reductions in habitat quality and quantity resulting from land-use change and climate change and, to a lesser extent, atmospheric nitrification and introduced species. Site-specific stressors include pesticide use and light pollution. Our assessment of global macrolepidopteran population trends includes numerous cases of both region-wide and local losses and studies that report no declines. Spatial variation of reported losses suggests that multiple stressors are in play. With the exception of recent reports from Costa Rica, the most severe examples of moth declines are from Northern Hemisphere regions of high human-population density and intensive agriculture.


Asunto(s)
Biodiversidad , Mariposas Nocturnas , Américas , Distribución Animal , Animales , Extinción Biológica , Cadena Alimentaria , Larva , Estrés Fisiológico , Reino Unido
3.
Annu Rev Entomol ; 65: 457-480, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31610138

RESUMEN

Insect declines are being reported worldwide for flying, ground, and aquatic lineages. Most reports come from western and northern Europe, where the insect fauna is well-studied and there are considerable demographic data for many taxonomically disparate lineages. Additional cases of faunal losses have been noted from Asia, North America, the Arctic, the Neotropics, and elsewhere. While this review addresses both species loss and population declines, its emphasis is on the latter. Declines of abundant species can be especially worrisome, given that they anchor trophic interactions and shoulder many of the essential ecosystem services of their respective communities. A review of the factors believed to be responsible for observed collapses and those perceived to be especially threatening to insects form the core of this treatment. In addition to widely recognized threats to insect biodiversity, e.g., habitat destruction, agricultural intensification (including pesticide use), climate change, and invasive species, this assessment highlights a few less commonly considered factors such as atmospheric nitrification from the burning of fossil fuels and the effects of droughts and changing precipitation patterns. Because the geographic extent and magnitude of insect declines are largely unknown, there is an urgent need for monitoring efforts, especially across ecological gradients, which will help to identify important causal factors in declines. This review also considers the status of vertebrate insectivores, reporting bias, challenges inherent in collecting and interpreting insect demographic data, and cases of increasing insect abundance.


Asunto(s)
Cambio Climático , Ecosistema , Contaminación Ambiental , Extinción Biológica , Insectos , Animales , Humanos , Dinámica Poblacional
4.
Oecologia ; 192(2): 501-514, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31872269

RESUMEN

Vertical niche partitioning might be one of the main driving forces explaining the high diversity of forest ecosystems. However, the forest's vertical dimension has received limited investigation, especially in temperate forests. Thus, our knowledge about how communities are vertically structured remains limited for temperate forest ecosystems. In this study, we investigated the vertical structuring of an arboreal caterpillar community in a temperate deciduous forest of eastern North America. Within a 0.2-ha forest stand, all deciduous trees ≥ 5 cm diameter at breast height (DBH) were felled and systematically searched for caterpillars. Sampled caterpillars were assigned to a specific stratum (i.e. understory, midstory, or canopy) depending on their vertical position and classified into feeding guild as either exposed feeders or shelter builders (i.e. leaf rollers, leaf tiers, webbers). In total, 3892 caterpillars representing 215 species of butterflies and moths were collected and identified. While stratum had no effect on caterpillar density, feeding guild composition changed significantly with shelter-building caterpillars becoming the dominant guild in the canopy. Species richness and diversity were found to be highest in the understory and midstory and declined strongly in the canopy. Family and species composition changed significantly among the strata; understory and canopy showed the lowest similarity. Food web analyses further revealed an increasing network specialization towards the canopy, caused by an increase in specialization of the caterpillar community. In summary, our study revealed a pronounced stratification of a temperate forest caterpillar community, unveiling a distinctly different assemblage of caterpillars dwelling in the canopy stratum.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Bosques , América del Norte , Árboles
6.
Oecologia ; 187(2): 521-533, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29560512

RESUMEN

Reduced ecological specialization is an emerging, general pattern of ecological networks in fragmented landscapes. In plant-herbivore interactions, reductions in dietary specialization of herbivore communities are consistently associated with fragmented landscapes, but the causes remain poorly understood. We propose several hypothetical bottom-up and top-down mechanisms that may reduce the specificity of plant-herbivore interactions. These include empirically plausible applications and extensions of theory based on reduced habitat patch size and isolation (considered jointly), and habitat edge effects. Bottom-up effects in small, isolated habitat patches may limit availability of suitable hostplants, a constraint that increases with dietary specialization. Poor hostplant quality due to inbreeding in such fragments may especially disadvantage dietary specialist herbivores even when their hostplants are present. Size and isolation of habitat patches may change patterns of predation of herbivores, but whether such putative changes are associated with herbivore dietary specialization should depend on the mobility, size, and diet breadth of predators. Bottom-up edge effects may favor dietary generalist herbivores, yet top-down edge effects may favor dietary specialists owing to reduced predation. An increasingly supported edge effect is trophic ricochets generated by large grazers/browsers, which remove key hostplant species of specialist herbivores. We present empirical evidence that greater deer browsing in small forest fragments disproportionately reduces specialist abundances in lepidopteran assemblages in northeastern USA. Despite indirect evidence for these mechanisms, they have received scant direct testing with experimental approaches at a landscape scale. Identifying their relative contributions to reduced specificity of plant-herbivore interactions in fragmented landscapes is an important research goal.


Asunto(s)
Ecosistema , Herbivoria , Animales , Dieta , Bosques , Conducta Predatoria
7.
Proc Natl Acad Sci U S A ; 112(2): 442-7, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25548168

RESUMEN

Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization.


Asunto(s)
Dieta , Herbivoria/fisiología , Insectos/fisiología , Animales , Biodiversidad , Ecosistema , Especificidad del Huésped , Insectos/clasificación , Lepidópteros/clasificación , Lepidópteros/fisiología , Modelos Biológicos , Filogenia
8.
J Chem Ecol ; 43(1): 66-74, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27966190

RESUMEN

Tiger moths (Lepidoptera: Erebidae: Arctiinae: Arctiini) are notable for their specialized associations with hosts that produce toxic secondary compounds, and are thus an ideal study system for understanding insect-plant interactions and the evolution of antipredatory defense. Likewise, their sister lineage (Arctiinae: Lithosiini) has been documented feeding on algae and lichens, and is known to sequester lichen-derived secondary compounds from the larval to adult stages. Prevalence of lichenivory in this early radiation (ca. 3000 species) may provide clues to the phylogenetic basis for storied chemical sequestration within all tiger moths. Despite the evolutionary significance of this trait, we lack a basic understanding of the extent of lichenivory among lithosiines, and the distribution of sequestered chemicals among life stages. The dynamics of chemical sequestration throughout the lifecycle for the lichen moth Crambidia cephalica were investigated by testing the hypothesis that lichen-derived metabolites are unequally distributed among life stages, and that laboratory-reared C. cephalica have less metabolite diversity than wild-caught individuals. Crambidia cephalica was reared on Physcia, and analyzed using high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). Several putative lichen-derived metabolites were detected across three life stages, i.e., larval, pupal, and adult, and differences among life stages and lichen host were observed. These results provide evidence that multiple lichen-derived metabolites are sequestered by C. cephalica; some metabolites are retained through adulthood, and others are lost or modified in earlier life stages. The presence of differing lichen-derived metabolites across life stages may indicate functional properties of the metabolites for C. cephalica with regards to chemical protection from antagonists, and other physiological processes.


Asunto(s)
Interacciones Huésped-Parásitos , Líquenes/metabolismo , Líquenes/parasitología , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/fisiología , Animales , Cromatografía Líquida de Alta Presión , Estadios del Ciclo de Vida
9.
Proc Natl Acad Sci U S A ; 110(12): 4656-60, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23487768

RESUMEN

Pollinators such as bees are essential to the functioning of terrestrial ecosystems. However, despite concerns about a global pollinator crisis, long-term data on the status of bee species are limited. We present a long-term study of relative rates of change for an entire regional bee fauna in the northeastern United States, based on >30,000 museum records representing 438 species. Over a 140-y period, aggregate native species richness weakly decreased, but richness declines were significant only for the genus Bombus. Of 187 native species analyzed individually, only three declined steeply, all of these in the genus Bombus. However, there were large shifts in community composition, as indicated by 56% of species showing significant changes in relative abundance over time. Traits associated with a declining relative abundance include small dietary and phenological breadth and large body size. In addition, species with lower latitudinal range boundaries are increasing in relative abundance, a finding that may represent a response to climate change. We show that despite marked increases in human population density and large changes in anthropogenic land use, aggregate native species richness declines were modest outside of the genus Bombus. At the same time, we find that certain ecological traits are associated with declines in relative abundance. These results should help target conservation efforts focused on maintaining native bee abundance and diversity and therefore the important ecosystems services that they provide.


Asunto(s)
Abejas/fisiología , Biodiversidad , Polinización , Adaptación Fisiológica , Animales , Humanos , Dinámica Poblacional , Estados Unidos
10.
BMC Evol Biol ; 11: 182, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21702958

RESUMEN

BACKGROUND: Researchers conducting molecular phylogenetic studies are frequently faced with the decision of what to do when weak branch support is obtained for key nodes of importance. As one solution, the researcher may choose to sequence additional orthologous genes of appropriate evolutionary rate for the taxa in the study. However, generating large, complete data matrices can become increasingly difficult as the number of characters increases. A few empirical studies have shown that augmenting genes even for a subset of taxa can improve branch support. However, because each study differs in the number of characters and taxa, there is still a need for additional studies that examine whether incomplete sampling designs are likely to aid at increasing deep node resolution. We target Gracillariidae, a Cretaceous-age (~100 Ma) group of leaf-mining moths to test whether the strategy of adding genes for a subset of taxa can improve branch support for deep nodes. We initially sequenced ten genes (8,418 bp) for 57 taxa that represent the major lineages of Gracillariidae plus outgroups. After finding that many deep divergences remained weakly supported, we sequenced eleven additional genes (6,375 bp) for a 27-taxon subset. We then compared results from different data sets to assess whether one sampling design can be favored over another. The concatenated data set comprising all genes and all taxa and three other data sets of different taxon and gene sub-sampling design were analyzed with maximum likelihood. Each data set was subject to five different models and partitioning schemes of non-synonymous and synonymous changes. Statistical significance of non-monophyly was examined with the Approximately Unbiased (AU) test. RESULTS: Partial augmentation of genes led to high support for deep divergences, especially when non-synonymous changes were analyzed alone. Increasing the number of taxa without an increase in number of characters led to lower bootstrap support; increasing the number of characters without increasing the number of taxa generally increased bootstrap support. More than three-quarters of nodes were supported with bootstrap values greater than 80% when all taxa and genes were combined. Gracillariidae, Lithocolletinae + Leucanthiza, and Acrocercops and Parectopa groups were strongly supported in nearly every analysis. Gracillaria group was well supported in some analyses, but less so in others. We find strong evidence for the exclusion of Douglasiidae from Gracillarioidea sensu Davis and Robinson (1998). Our results strongly support the monophyly of a G.B.R.Y. clade, a group comprised of Gracillariidae + Bucculatricidae + Roeslerstammiidae + Yponomeutidae, when analyzed with non-synonymous changes only, but this group was frequently split when synonymous and non-synonymous substitutions were analyzed together. CONCLUSIONS: 1) Partially or fully augmenting a data set with more characters increased bootstrap support for particular deep nodes, and this increase was dramatic when non-synonymous changes were analyzed alone. Thus, the addition of sites that have low levels of saturation and compositional heterogeneity can greatly improve results. 2) Gracillarioidea, as defined by Davis and Robinson (1998), clearly do not include Douglasiidae, and changes to current classification will be required. 3) Gracillariidae were monophyletic in all analyses conducted, and nearly all species can be placed into one of six strongly supported clades though relationships among these remain unclear. 4) The difficulty in determining the phylogenetic placement of Bucculatricidae is probably attributable to compositional heterogeneity at the third codon position. From our tests for compositional heterogeneity and strong bootstrap values obtained when synonymous changes are excluded, we tentatively conclude that Bucculatricidae is closely related to Gracillariidae + Roeslerstammiidae + Yponomeutidae.


Asunto(s)
Proteínas de Insectos/genética , Mariposas Nocturnas/clasificación , Mariposas Nocturnas/genética , Filogenia , Hojas de la Planta/parasitología , Animales , Datos de Secuencia Molecular , Mariposas Nocturnas/fisiología
11.
Annu Rev Entomol ; 55: 547-68, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19743915

RESUMEN

Endangerment factors are reviewed for 57 U.S. federally listed insects and 116 rare eastern North American lepidopterans to determine the importance of invasive species relative to 15 other recognized endangerment factors. Invasive plants, social insects (especially ants), and vertebrate grazers and predators repeatedly were identified as groups directly or indirectly threatening native insect biodiversity. Among rare eastern North American lepidopterans, the (mostly indirect) consequences of the establishment of the gypsy moth (Lymantria dispar) surfaced as a general threat. Remote islands, especially those with high human visitation, stand out as being highly threatened by invasives. In the worst cases, impacts from invasive species cascade through a community and destabilize existing trophic interconnections and alter basic ecosystem properties, changing hydrology, nutrient cycles, soil chemistry, fire susceptibility, and light availability, and precipitate myriad other changes in biotic and abiotic parameters. Invasive ants and herbivorous insects provide some of the most dramatic examples of such insect-induced invasional cascades.


Asunto(s)
Especies en Peligro de Extinción , Lepidópteros , Control Biológico de Vectores , Animales , Conservación de los Recursos Naturales , América del Norte
12.
Zookeys ; 923: 79-90, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32292272

RESUMEN

Stamnodes fergusoni sp. nov. occurs from extreme southeastern Arizona through southern New Mexico east into western Texas, USA. Identity of the new species can be reliably determined by external features, genitalic characters, and COI haplotypes. Larvae are believed to be specialists on Salvia pinguifolia and S. ballotiflora. The adult and larval stages and male and female genitalia are illustrated, available DNA barcode data that support the recognition of the new Stamnodes are reviewed, and its life history briefly characterized.

13.
Ecol Evol ; 10(24): 14137-14151, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33732431

RESUMEN

Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co-occurring plant species.Using a Holarctic dataset of exposed-feeding and shelter-building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.Our plant-caterpillar network data derived from plot-based samplings at three different continents included >28,000 individual caterpillar-plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed-feeding and shelter-building caterpillars.Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host-specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large-scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.

14.
PeerJ ; 7: e7982, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31737446

RESUMEN

We critically re-examine nine of the ten fossil specimens currently assigned to Hepialidae. Three fossils with impressions of wing veins and scales placed in the fossil genus Prohepialus Piton, 1940, and two mummified larvae that show apomorphic characters, have features that support placement in Hepialidae. The other four fossils that we evaluate, Prohepialus incertus Piton, 1940; Oiophassus nycterus Zhang, 1989; Protohepialus comstocki Pierce, 1945; and a fossil scale, lack definitive hepialid characters. One of these, Prohepialus incertus Piton, 1940, appears to represent a symphytan (Hymenoptera), and is excluded from Lepidoptera. The fossilized wings placed in Prohepialus by Jarzembowski display numerous features that indicate a proximate phylogenetic relationship to extant members of the hepialid genus Sthenopis Packard and related genera.

15.
Zookeys ; 846: 75-116, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31148929

RESUMEN

The Lactura Walker, 1854 fauna north of Mexico is revised. Six species are documented, one new species Lacturanalli Matson & Wagner, sp. n. is described, and two new synonymies are proposed: Lacturapsammitis (Zeller, 1872), syn. n. and L.rhodocentra (Meyrick, 1913), syn. n. One new subspecies Lacturasubfervenssapeloensis Matson & Wagner, ssp. n. is also described. Adult and larval stages, male and female genitalia, are illustrated, a preliminary phylogeny is presented based on nuclear and mitochondrial data, distribution records provided for verified specimens, and the biology and life history for each species is briefly characterized. Phylogenetic analyses, larval phenotypes, and life history information reveal that much of the historic taxonomic confusion rampant across this group in North America traces to the phenotypic variation in just one species, L.subfervens (Walker, 1854).

16.
PLoS One ; 14(7): e0218994, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31291279

RESUMEN

Unlike most notodontids, Theroa zethus larvae feed on plants that emit copious latex when damaged. To determine how the larvae overcome this defense, we filmed final instars on poinsettia, Euphorbia pulcherrima, then simulated their behaviors and tested how the behaviors individually and combined affect latex exudation. Larvae initially scraped the stem, petiole, or midrib with their mandibles, then secreted acid from their ventral eversible gland (VEG) onto the abraded surface. Scraping facilitated acid penetration by disrupting the waxy cuticle. As the acid softened tissues, the larvae used their mandibles to compress the plant repeatedly, thereby rupturing the latex canals. Scraping, acid application, and compression created withered furrows that greatly diminished latex exudation distal to the furrows where the larvae invariably fed. The VEG in notodontids ordinarily serves to deter predators; when attacked, larvae spray acid aimed directly at the assailant. Using HPLC, we documented that the VEG secretion of T. zethus contains 30% formic acid (6.53M) with small amounts of butyric acid (0.05M). When applied to poinsettia petioles, the acids caused a similar reduction in latex outflow as VEG secretion milked from larvae. VEG acid could disrupt latex canals in part by stimulating the normal acid-growth mechanism employed by plants to loosen walls for cell elongation. Histological examination of cross sections in poinsettia midribs confirmed that cell walls within furrows were often highly distorted as expected if VEG acids weaken walls. Theroa zethus is the only notodontid caterpillar known to use mandibular scraping and VEG acid to disable plant defenses. However, we document that mandibular constriction of petioles occurs also in other notodontids including species that feed on hardwood trees. This capability may represent a pre-adaptation that facilitated the host shift in the Theroa lineage onto latex-bearing plants by enabling larvae to deactivate laticifers with minimal latex contact.


Asunto(s)
Ácido Butírico/farmacología , Formiatos/farmacología , Herbivoria/fisiología , Larva/fisiología , Lepidópteros/fisiología , Adaptación Fisiológica , Animales , Secreciones Corporales/química , Secreciones Corporales/metabolismo , Ácido Butírico/química , Ácido Butírico/metabolismo , Euphorbia/metabolismo , Euphorbia/parasitología , Formiatos/química , Formiatos/metabolismo , Látex/biosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología
17.
PLoS One ; 14(6): e0207833, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31170152

RESUMEN

Insect herbivores and their hostplants constitute much of Earth's described biological diversity, but how these often-specialized associations diversify is not fully understood. We combined detailed hostplant data and comparative phylogenetic analyses of the lepidopteran family Momphidae to explore how shifts in the use of hostplant resources, not just hostplant taxon, contribute to the diversification of a phytophagous insect lineage. We inferred two phylogenetic hypotheses emphasizing relationships among species in the nominate genus, Mompha Hübner. A six-gene phylogeny was constructed with reared exemplars and collections from hostplants in the family Onagraceae from western and southwestern USA, and a cytochrome c oxidase subunit 1 (COI) phylogeny was inferred from collections and publicly available accessions in the Barcode of Life Data System. Species delimitation analyses combined with morphological data revealed ca. 56 undescribed species-level taxa, many of which are hostplant specialists on Onagraceae in the southwestern USA. Our phylogenetic reconstructions divided Momphidae into six major clades: 1) an Onagraceae flower- and fruit-boring clade, 2) a Melastomataceae-galling clade, 3) a leafmining clade A, 4) a leafmining clade B, 5) a Zapyrastra Meyrick clade, and 6) a monobasic lineage represented by Mompha eloisella (Clemens). Ancestral trait reconstructions using the COI phylogeny identified leafmining on Onagraceae as the ancestral state for Momphidae. Our study finds that shifts along three hostplant resource axes (plant taxon, plant tissue type, and larval feeding mode) have contributed to the evolutionary success and diversification of momphids.


Asunto(s)
Biodiversidad , Evolución Biológica , Mariposas Nocturnas/genética , Filogenia , Animales , Complejo IV de Transporte de Electrones/genética , Conducta Alimentaria , Larva , Melastomataceae , Onagraceae , Sudoeste de Estados Unidos
18.
Zookeys ; (711): 141-150, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29134033

RESUMEN

A new species of Lactura is described from Texas: Lactura rubritegulasp. n. Identity of the new species can be reliably determined by both larval and adult characters, CO1 haplotypes, and its late-spring period of flight activity. Male genitalic features overlap with those of L. basistriga (Barnes & McDunnough, 1913), whereas female structures differ markedly between the pair. The new Sideroxylon-feeding species, rare in collections, is found principally in limestone areas in the vicinity San Antonio, Texas, westward through the southern Hill Country. We illustrate the adult and larval stages and male and female genitalia, review available DNA barcode data that support the recognition of the new Lactura, and briefly characterize its life history.

19.
Zootaxa ; 4337(2): 198-222, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29242439

RESUMEN

Larvae of the New World gracillariid moth genus Marmara are primarily stem/bark miners, with some species mining in leaves or fruits. We describe a new species, M. viburnella Eiseman & Davis, which feeds on Viburnum, initially mining the leaves but completing development as a stem miner. The type series is from Nantucket Island, Massachusetts, with observations of leaf mines indicating the species is widespread in the eastern USA. Combining previously published data, our own observations, and other sources, we present a list of known Marmara hostplants, many of which represent undescribed species.


Asunto(s)
Lepidópteros , Animales , Larva , Mariposas Nocturnas , Hojas de la Planta
20.
Science ; 373(6551): 135, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244385
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA