Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Front Pain Res (Lausanne) ; 4: 1171188, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287623

RESUMEN

Introduction: The high prevalence and severe symptoms of migraines in humans emphasizes the need to identify underlying mechanisms that can be targeted for therapeutic benefit. Clinical Endocannabinoid Deficiency (CED) posits that reduced endocannabinoid tone may contribute to migraine development and other neuropathic pain conditions. While strategies that increase levels of the endocannabinoid n-arachidonoylethanolamide have been tested, few studies have investigated targeting the levels of the more abundant endocannabinoid, 2-arachidonoylgycerol, as an effective migraine intervention. Methods: Cortical spreading depression was induced in female Sprague Dawley rats via KCl (potassium chloride) administration, followed by measures of endocannabinoid levels, enzyme activity, and neuroinflammatory markers. Efficacy of inhibiting 2-arachidonoylglycerol hydrolysis to mitigate periorbital allodynia was then tested using reversal and prevention paradigms. Results: We discovered reduced 2-arachidonoylglycerol levels in the periaqueductal grey associated with increased hydrolysis following headache induction. Pharmacological inhibition of the 2-arachidonoylglycerol hydrolyzing enzymes, α/ß-hydrolase domain-containing 6 and monoacylglycerol lipase reversed and prevented induced periorbital allodynia in a cannabinoid receptor-dependent manner. Discussion: Our study unravels a mechanistic link between 2-arachidonoylglycerol hydrolysis activity in the periaqueductal grey in a preclinical, rat model of migraine. Thus, 2-arachidonoylglycerol hydrolysis inhibitors represent a potential new therapeutic avenue for the treatment of headache.

2.
Pharmaceutics ; 14(8)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36015292

RESUMEN

Cortical spreading depression (CSD) is a pathophysiological mechanism underlying headache disorders, including migraine. Blood-brain barrier (BBB) permeability is increased during CSD. Recent papers have suggested that heat shock proteins (HSP) contribute to the integrity of the blood-brain barrier. In this study, the possible role of HSP90 in CSD-associated blood-brain barrier leak at the endothelial cell was investigated using an in vitro model, for the blood-endothelial barrier (BEB), and an in vivo model with an intact BBB. We measured barrier integrity using trans endothelial electric resistance (TEER) across a monolayer of rodent brain endothelial cells (bEnd.3), a sucrose uptake assay, and in situ brain perfusion using female Sprague Dawley rats. CSD was induced by application of 60 mM KCl for 5 min in in vitro experiments or cortical injection of KCl (1 M, 0.5 µL) through a dural cannula in vivo. HSP90 was selectively blocked by 17-AAG. Our data showed that preincubation with 17-AAG (1 µM) prevented the reduction of TEER values caused by the KCl pulse on the monolayer of bEnd.3 cells. The elevated uptake of 14C-sucrose across the same endothelial monolayer induced by the KCl pulse was significantly reduced after preincubation with HSP90 inhibitor. Pre-exposure to 17-AAG significantly mitigated the transient BBB leak after CSD induced by cortical KCl injection as determined by in situ brain perfusion in female rats. Our results demonstrated that inhibition of HSP90 with the selective agent 17-AAG reduced CSD-associated BEB/BBB paracellular leak. Overall, this novel observation supports HSP90 inhibition mitigates KCl-induced BBB permeability and suggests the development of new therapeutic approaches targeting HSP90 in headache disorders.

3.
Pharmaceutics ; 14(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35890365

RESUMEN

Pathologies of the blood-brain barrier (BBB) have been linked to a multitude of central nervous system (CNS) disorders whose pathology is poorly understood. Cortical spreading depression (CSD) has long been postulated to be involved in the underlying mechanisms of these disease states, yet a complete understanding remains elusive. This study seeks to utilize an in vitro model of the blood-brain barrier (BBB) with brain endothelial cell (b.End3) murine endothelioma cells to investigate the role of CSD in BBB pathology by characterizing effects of the release of major pronociceptive substances into the extracellular space of the CNS. The application of trans-endothelial electrical resistance (TEER) screening, transcellular uptake, and immunoreactive methods were used in concert with global proteome and phospho-proteomic approaches to assess the effect of modeled CSD events on the modeled BBB in vitro. The findings demonstrate relocalization and functional alteration to proteins associated with the actin cytoskeleton and endothelial tight junctions. Additionally, unique pathologic mechanisms induced by individual substances released during CSD were found to have unique phosphorylation signatures in phospho-proteome analysis, identifying Zona Occludins 1 (ZO-1) as a possible pathologic "checkpoint" of the BBB. By utilizing these phosphorylation signatures, possible novel diagnostic methods may be developed for CSD and warrants further investigation.

4.
Brain Res ; 1763: 147448, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33771519

RESUMEN

BACKGROUND: Sex hormones have been implicated in pH regulation of numerous physiological systems. One consistent factor of these studies is the sodium-hydrogen exchanger 1 (NHE1). NHE1 has been associated with pH homeostasis at epithelial barriers. Hormone fluctuations have been implicated in protection and risk for breaches in blood brain barrier (BBB)/blood endothelial barrier (BEB) integrity. Few studies, however, have investigated BBB/BEB integrity in neurological disorders in the context of sex-hormone regulation of pH homeostasis. METHODS//RESULTS: Physiologically relevant concentrations of 17-ß-estradiol (E2, 294 pM), progesterone (P, 100 nM), and testosterone (T,3.12 nM) were independently applied to cultured immortalized bEnd.3 brain endothelial cells to study the BEB. Individual gonadal hormones showed preferential effects on extracellular pH (E2), 14C-sucrose uptake (T), stimulated paracellular breaches (P) with dependence on functional NHE1 expression without impacting transendothelial resistance (TEER) or total protein expression. While total NHE1 expression was not changed as determined via whole cell lysate and subcellular fractionation experiment, biotinylation of NHE1 for surface membrane expression showed E2 reduced functional expression. Quantitative proteomic analysis revealed divergent effects of 17-ß-estradiol and testosterone on changes in protein abundance in bEnd.3 endothelial cells as compared to untreated controls. CONCLUSIONS: These data suggest that circulating levels of sex hormones may independently control BEB integrity by 1) regulating pH homeostasis through NHE1 functional expression and 2) modifying the endothelial proteome.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Estradiol/fisiología , Progesterona/fisiología , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Testosterona/fisiología , Animales , Transporte Biológico , Células Endoteliales/metabolismo , Estradiol/sangre , Concentración de Iones de Hidrógeno , Progesterona/sangre , Proteoma/metabolismo , Ratas , Testosterona/sangre
5.
PLoS One ; 15(5): e0227463, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32469979

RESUMEN

Disruption of blood-brain barrier integrity and dramatic failure of brain ion homeostasis including fluctuations of pH occurs during cortical spreading depression (CSD) events associated with several neurological disorders, including migraine with aura, traumatic brain injury and stroke. NHE1 is the primary regulator of pH in the central nervous system. The goal of the current study was to investigate the role of sodium-hydrogen exchanger type 1 (NHE1) in blood brain barrier (BBB) integrity during CSD events and the contributions of this antiporter on xenobiotic uptake. Using immortalized cell lines, pharmacologic inhibition and genetic knockdown of NHE1 mitigated the paracellular uptake of radiolabeled sucrose implicating functional NHE1 in BBB maintenance. In contrast, loss of functional NHE1 in endothelial cells facilitated uptake of the anti-migraine therapeutic, sumatriptan. In female rats, cortical KCl but not aCSF selectively reduced total expression of NHE1 in cortex and PAG but increased expression in trigeminal ganglia; no changes were seen in trigeminal nucleus caudalis. Thus, in vitro observations may have a significance in vivo to increase brain sumatriptan levels. Pharmacological inhibition of NHE1 prior to cortical manipulations enhanced the efficacy of sumatriptan at early time-points but induced facial sensitivity alone. Overall, our results suggest that dysregulation of NHE1 contributes to breaches in BBB integrity, drug penetrance, and the behavioral sensitivity to the antimigraine agent, sumatriptan.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Depresión de Propagación Cortical/genética , Intercambiador 1 de Sodio-Hidrógeno/genética , Sumatriptán/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/patología , Depresión de Propagación Cortical/efectos de los fármacos , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inyecciones Intraperitoneales , Migraña con Aura/tratamiento farmacológico , Migraña con Aura/genética , Migraña con Aura/patología , Ratas , Intercambiador 1 de Sodio-Hidrógeno/antagonistas & inhibidores , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/patología
6.
Pain ; 161(9): 2179-2190, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32379223

RESUMEN

ABSTRACT: Pharmacological tools for chronic visceral pain management are still limited and inadequate. A3 adenosine receptor (A3AR) agonists are effective in different models of persistent pain. Recently, their activity has been related to the block of N-type voltage-gated Ca2+ channels (Cav2.2) in dorsal root ganglia (DRG) neurons. The present work aimed to evaluate the efficacy of A3AR agonists in reducing postinflammatory visceral hypersensitivity in both male and female rats. Colitis was induced by the intracolonic instillation of 2,4-dinitrobenzenesulfonic acid (DNBS; 30 mg in 0.25 mL 50% EtOH). Visceral hypersensitivity was assessed by measuring the visceromotor response and the abdominal withdrawal reflex to colorectal distension. The effects of A3AR agonists (MRS5980 and Cl-IB-MECA) were evaluated over time after DNBS injection and compared to that of the selective Cav2.2 blocker PD173212, and the clinically used drug linaclotide. A3AR agonists significantly reduced DNBS-evoked visceral pain both in the postinflammatory (14 and 21 days after DNBS injection) and persistence (28 and 35 days after DNBS) phases. Efficacy was comparable to effects induced by linaclotide. PD173212 fully reduced abdominal hypersensitivity to control values, highlighting the role of Cav2.2. The effects of MRS5980 and Cl-IB-MECA were completely abolished by the selective A3AR antagonist MRS1523. Furthermore, patch-clamp recordings showed that A3AR agonists inhibited Cav2.2 in dorsal root ganglia neurons isolated from either control or DNBS-treated rats. The effect on Ca2+ current was PD173212-sensitive and prevented by MRS1523. A3AR agonists are effective in relieving visceral hypersensitivity induced by DNBS, suggesting a potential therapeutic role against abdominal pain.


Asunto(s)
Canales de Calcio Tipo N , Dolor Visceral , Agonistas del Receptor de Adenosina A3 , Animales , Femenino , Ganglios Espinales , Masculino , Manejo del Dolor , Ratas , Dolor Visceral/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA