Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cerebellum ; 9(3): 272-83, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20387026

RESUMEN

The list of genes that when mutated cause disruptions in cerebellar development is rapidly increasing. The study of both spontaneous and engineered mouse mutants has been essential to this progress, as it has revealed much of our current understanding of the developmental processes required to construct the mature cerebellum. Improvements in brain imaging, such as magnetic resonance imaging (MRI) and the emergence of better classification schemes for human cerebellar malformations, have recently led to the identification of a number of genes which cause human cerebellar disorders. In this review we argue that synergistic approaches combining classical molecular techniques, genomics, and mouse models of human malformations will be essential to fuel additional discoveries of cerebellar developmental genes and mechanisms.


Asunto(s)
Cerebelo/embriología , Cerebelo/crecimiento & desarrollo , Animales , Técnicas Genéticas , Humanos , Ratones , Ratones Mutantes
2.
Dev Biol ; 315(2): 448-58, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18262512

RESUMEN

During development, the semaphorin family of guidance molecules is required for proper formation of the sympathetic nervous system. Plexins are receptors that mediate semaphorin signaling, but how plexins function during sympathetic development is not fully understood. Using phenotypic analyses of mutant mice in vivo, expression pattern studies, and in vitro assays, we show that plexin-A3 and plexin-A4 are essential for normal sympathetic development. This study confirms our previous in vitro findings that the two plexins differentially regulate the guidance of sympathetic axons. In addition, we find that semaphorin signaling through plexin-A3 and plexin-A4 restricts the migration of sympathetic neurons, but these two plexins function redundantly since migration defects are only observed in plexin-A3/-A4 double mutants. Surprisingly, our analysis also indicates that plexin-A3 and plexin-A4 are not required for guiding neural crest precursors prior to reaching the sympathetic anlagen. Immunoprecipitation studies suggest that these two plexins independently mediate secreted semaphorin signaling. Thus, plexin-A3 and plexin-A4 are expressed in newly-differentiated sympathetic neurons, but not their neural crest precursors. They function cooperatively to regulate the migration of sympathetic neurons and then differentially to guide the sympathetic axons.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Cresta Neural/embriología , Neuronas/fisiología , Receptores de Superficie Celular/fisiología , Sistema Nervioso Simpático/embriología , Animales , Apoptosis , Axones/fisiología , Diferenciación Celular , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Técnicas In Vitro , Proteínas de la Membrana/farmacología , Proteínas de la Membrana/fisiología , Ratones , Ratones Noqueados , Mitosis , Complejos Multiproteicos , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/farmacología , Cresta Neural/citología , Neuronas/citología , Neuronas/efectos de los fármacos , Neuropilinas/química , Neuropilinas/fisiología , Receptores de Superficie Celular/química , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , Semaforina-3A/farmacología , Semaforina-3A/fisiología , Sistema Nervioso Simpático/citología
3.
Dev Biol ; 324(1): 1-9, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18804103

RESUMEN

In vertebrates, class 3 semaphorins (SEMA3) control axon behaviour by binding to neuronal cell surface receptors composed of a ligand binding subunit termed neuropilin (NRP) and a signal transduction subunit of the A-type plexin family (PLXNA). We have determined the requirement for SEMA3/NRP/PLXN signalling in the development of the facial nerve, which contains axons from two motor neuron populations, branchiomotor and visceromotor neurons. Loss of either SEMA3A/NRP1 or SEMA3F/NRP2 caused defasciculation and ectopic projection of facial branchiomotor axons. In contrast, facial visceromotor axons selectively required SEMA3A/NRP1. Thus, the greater superficial petrosal nerve was defasciculated, formed ectopic projections and failed to branch in its target area when either SEMA3A or NRP1 were lost. To examine which A-type plexin conveyed SEMA3/neuropilin signals during facial nerve development, we combined an expression analysis with loss of function studies. Even though all four A-type plexins were expressed in embryonic motor neurons, PLXNA1 and PLXNA2 were not essential for facial nerve development. In contrast, loss of PLXNA4 phenocopied the defects of SEMA3A and NRP1 mutants, and loss of PLXNA3 phenocopied the defects of SEMA3F and NRP2 mutants. The combined loss of PLXNA3 and PLXNA4 impaired facial branchiomotor axon guidance more severely than loss of either plexin alone, suggesting that SEMA3A and SEMA3F signals, even though both essential, are partially redundant.


Asunto(s)
Nervio Facial/embriología , Proteínas del Tejido Nervioso/fisiología , Receptores de Superficie Celular/fisiología , Semaforinas/fisiología , Transducción de Señal/fisiología , Animales , Axones/fisiología , Nervio Facial/metabolismo , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/genética , Neuropilina-1/genética , Neuropilina-1/fisiología , Neuropilina-2/genética , Neuropilina-2/fisiología , Receptores de Superficie Celular/genética , Rombencéfalo/citología , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Semaforinas/genética
4.
Neuroscientist ; 12(5): 398-409, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16957002

RESUMEN

During the development of the nervous system, neurons must first migrate to their appropriate locations and then send out axons to make connections. Various environmental cues guide these migrating neurons and growing axons. After axons reach their target regions, neuronal contacts are created through the formation of synapses. Because excess axonal branches and synaptic contacts are often formed during early development, they are pruned or eliminated at later stages to create specific neuronal connections. Several groups of ligand-receptor pairs have been identified to regulate each of these cellular events. Evidence also indicates that these same molecules may be used in multiple developmental processes. Here, we discuss semaphorins and plexins, the largest family of axon guidance ligand-receptor pairs. Because the roles of semaphorins in neuronal migration and axonal repulsion have been extensively reviewed, we will focus on plexin receptors. We will discuss how semaphorin signals are specifically passed through these receptors into cells and how plexins mediate their newly identified roles in axon pruning and synaptic development.


Asunto(s)
Axones/metabolismo , Encéfalo/embriología , Moléculas de Adhesión Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal/fisiología , Sinapsis/metabolismo , Animales , Encéfalo/citología , Encéfalo/fisiología , Movimiento Celular/fisiología , Humanos , Semaforinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA