Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8017): 636-642, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811732

RESUMEN

Chemical vapour deposition (CVD) synthesis of graphene on copper has been broadly adopted since the first demonstration of this process1. However, widespread use of CVD-grown graphene for basic science and applications has been hindered by challenges with reproducibility2 and quality3. Here we identify trace oxygen as a key factor determining the growth trajectory and quality for graphene grown by low-pressure CVD. Oxygen-free chemical vapour deposition (OF-CVD) synthesis is fast and highly reproducible, with kinetics that can be described by a compact model, whereas adding trace oxygen leads to suppressed nucleation and slower/incomplete growth. Oxygen affects graphene quality as assessed by surface contamination, emergence of the Raman D peak and decrease in electrical conductivity. Epitaxial graphene grown in oxygen-free conditions is contamination-free and shows no detectable D peak. After dry transfer and boron nitride encapsulation, it shows room-temperature electrical-transport behaviour close to that of exfoliated graphene. A graphite-gated device shows well-developed integer and fractional quantum Hall effects. By highlighting the importance of eliminating trace oxygen, this work provides guidance for future CVD system design and operation. The increased reproducibility and quality afforded by OF-CVD synthesis will broadly influence basic research and applications of graphene.

2.
Nano Lett ; 24(30): 9169-9177, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39024465

RESUMEN

The manipulation of spin-phonon coupling in both formations and explorations of magnetism in two-dimensional van der Waals ferromagnetic semiconductors facilitates unprecedented prospects for spintronic devices. The interlayer engineering with spin-phonon coupling promises controllable magnetism via organic cation intercalation. Here, spectroscopic evidence reveals the intercalation effect on the intrinsic magnetic and electronic transitions in quasi-two-dimensional Cr2Ge2Te6 using tetrabutyl ammonium (TBA+) as the intercalant. The temperature evolution of Raman modes, Eg3 and Ag1, along with the magnetization measurements, unambiguously captures the enhancement of the ferromagnetic Curie temperature in the intercalated heterostructure. Moreover, the Eg4 mode highlights the increased effect of spin-phonon interaction in magnetic-order-induced lattice distortion. Combined with the first-principle calculations, we observed a substantial number of electrons transferred from TBA+ to Cr through the interface. The interplay between spin-phonon coupling and magnetic ordering in van der Waals magnets appeals for further understanding of the manipulation of magnetism in layered heterostructures.

3.
J Am Chem Soc ; 146(2): 1588-1602, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38170994

RESUMEN

Shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) and density functional theory (DFT) are used to probe Cl- adsorption and the order-disorder phase transition associated with the c(2 × 2) Cl- adlayer on Cu(100) in acid media. A two-component ν(Cu-Cl) vibrational band centered near 260 ± 1 cm-1 is used to track the potential dependence of Cl- adsorption. The potential dependence of the dominant 260 cm-1 component tracks the coverage of the fluctional c(2 × 2) Cl- phase on terraces in good agreement with the normalized intensity of the c(2 × 2) superstructure rods in prior surface X-ray diffraction (SXRD) studies. As the c(2 × 2) Cl- coverage approaches saturation, a second ν(Cu-Cl) component mode emerges between 290 and 300 cm-1 that coincides with the onset and stiffening of step faceting where Cl- occupies the threefold hollow sites to stabilize the metal kink saturated Cu <100> step edge. The formation of the c(2 × 2) Cl- adlayer is accompanied by the strengthening of ν(O-H) stretching modes in the adjacent non-hydrogen-bonded water at 3600 cm-1 and an increase in hydronium concentration evident in the flanking H2O modes at 3100 cm-1. The polarization of the water molecules and enrichment of hydronium arise from the combination of Cl- anionic character and lateral templating provided by the c(2 × 2) adlayer, consistent with SXRD studies. At negative potentials, Cl- desorption occurs followed by development of a sulfate νs(S═O) band. Below -1.1 V vs Hg/HgSO4, a new 200 cm-1 mode emerges congruent with hydride formation and surface reconstruction reported in electrochemical scanning tunneling microscopy studies.

4.
Biologicals ; 86: 101756, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479213

RESUMEN

An international hybrid meeting held 21-22 June 2023 in Ottawa, Canada brought together regulators, scientists, and industry experts to discuss a set of principles and best practices in the development and implementation of standards. Although the use of international standards (ISs) and international units (IUs) has been an essential part of ensuring human and animal vaccine quality in the past decades, the types and uses of standards have expanded with technological advances in manufacture and testing of vaccines. The needs of stakeholders are evolving in response to the ever-increasing complexity, diversity, and number of vaccine products as well as increasing efforts to replace animal-based potency tests with in vitro assays that measure relevant quality attributes. As such, there must be a concomitant evolution in the design and implementation of both international and in-house standards. Concomitantly, greater harmonization of regulatory expectations must be achieved through collaboration with standard-setting organizations, national control laboratories and manufacturers. Stakeholders provided perspectives on challenges and several recommendations emerged as essential to advancing agreed upon objectives.


Asunto(s)
Control de Calidad , Vacunas , Humanos , Vacunas/normas , Animales , Canadá , Estándares de Referencia
5.
J Am Chem Soc ; 145(17): 9850-9856, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37083432

RESUMEN

Separating oxygen from air to create oxygen-enriched gas streams is a process that is significant in both industrial and medical fields. However, the prominent technologies for creating oxygen-enriched gas streams are both energy and infrastructure intensive as they use cryogenic temperatures or materials that adsorb N2 from air. The latter method is less efficient than the methods that adsorb O2 directly. Herein, we show, via a combination of gas adsorption isotherms, gas breakthrough experiments, neutron and synchrotron X-ray powder diffraction, Raman spectroscopy, and computational studies, that the metal-organic framework, Al(HCOO)3 (ALF), which is easily prepared at low cost from commodity chemicals, exhibits substantial O2 adsorption and excellent time-dependent O2/N2 selectivity in a range of 50-125 near dry ice/solvent (≈190 K) temperatures. The effective O2 adsorption with ALF at ≈190 K and ≈0.21 bar (the partial pressure of O2 in air) is ≈1.7 mmol/g, and at ice/salt temperatures (≈250 K), it is ≈0.3 mmol/g. Though the kinetics for full adsorption of O2 near 190 K are slower than at temperatures nearer 250 K, the kinetics for initial O2 adsorption are fast, suggesting that O2 separation using ALF with rapid temperature swings at ambient pressures is a potentially viable choice for low-cost air separation applications. We also present synthetic strategies for improving the kinetics of this family of compounds, namely, via Al/Fe solid solutions. To the best of our knowledge, ALF has the highest O2/N2 sorption selectivity among MOF adsorbents without open metal sites as verified by co-adsorption experiments..

6.
Small ; 19(10): e2206774, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36549899

RESUMEN

Dead-end filtration has proven to effectively prepare macroscopically (3.8 cm2 ) aligned thin films from solutionbased single-wall carbon nanotubes (SWCNTs). However, to make this technique broadly applicable, the role of SWCNT length and diameter must be understood. To date, most groups report the alignment of unsorted, large diameter (≈1.4 nm) SWCNTs, but systematic studies on their small diameter are rare (≈0.78 nm). In this work, films with an area of A = 3.81 cm2 and a thickness of ≈40 nm are prepared from length-sorted fractions comprising of small and large diameter SWCNTs, respectively. The alignment is characterized by cross-polarized microscopy, scanning electron microscopy, absorption and Raman spectroscopy. For the longest fractions (Lavg = 952 nm ± 431 nm, Δ = 1.58 and Lavg = 667 nm ± 246 nm, Δ = 1.55), the 2D order parameter, S2D, values of ≈0.6 and ≈0.76 are reported for the small and large diameter SWCNTs over an area of A = 625 µm2 , respectively. A comparison of Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory calculations with the aligned domain size is then used to propose a law identifying the required length of a carbon nanotube with a given diameter and zeta potential.

7.
Nature ; 551(7679): 227-231, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29088697

RESUMEN

Copy-number variants of chromosome 16 region 16p11.2 are linked to neuropsychiatric disorders and are among the most prevalent in autism spectrum disorders. Of many 16p11.2 genes, Kctd13 has been implicated as a major driver of neurodevelopmental phenotypes. The function of KCTD13 in the mammalian brain, however, remains unknown. Here we delete the Kctd13 gene in mice and demonstrate reduced synaptic transmission. Reduced synaptic transmission correlates with increased levels of Ras homolog gene family, member A (RhoA), a KCTD13/CUL3 ubiquitin ligase substrate, and is reversed by RhoA inhibition, suggesting increased RhoA as an important mechanism. In contrast to a previous knockdown study, deletion of Kctd13 or kctd13 does not increase brain size or neurogenesis in mice or zebrafish, respectively. These findings implicate Kctd13 in the regulation of neuronal function relevant to neuropsychiatric disorders and clarify the role of Kctd13 in neurogenesis and brain size. Our data also reveal a potential role for RhoA as a therapeutic target in disorders associated with KCTD13 deletion.


Asunto(s)
Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Eliminación de Gen , Transmisión Sináptica/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/psicología , Trastorno Autístico/genética , Trastorno Autístico/psicología , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/patología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Proteínas Portadoras/genética , Deleción Cromosómica , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/psicología , Cromosomas Humanos Par 16/genética , Proteínas Cullin/metabolismo , Femenino , Discapacidad Intelectual/genética , Discapacidad Intelectual/psicología , Masculino , Ratones , Herencia Multifactorial/genética , Neurogénesis/genética , Tamaño de los Órganos/genética , Reproducibilidad de los Resultados , Transmisión Sináptica/efectos de los fármacos , Complejos de Ubiquitina-Proteína Ligasa , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Proteína de Unión al GTP rhoA
8.
Biologicals ; 83: 101695, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37516084

RESUMEN

Regulatory authorities require veterinary batch-release testing to confirm vaccine potency and safety, but these tests have traditionally relied on large numbers of laboratory animals. Advances in vaccine research and development offer increasing opportunities to replace in vivo testing, and some stakeholders have made significant progress in incorporating 3Rs elements in quality control strategies. A three-part event series entitled "3Rs Implementation in Veterinary Vaccine Batch-Release Testing: Current state-of-the-art and future opportunities" was jointly organized by the Animal-Free Safety Assessment Collaboration, HealthforAnimals, and the International Alliance of Biological Standardization. Two webinars and a workshop aimed to outline the state-of-the-art non-animal approaches for veterinary batch-release testing. The events included information on the state of the deletion of obsolete safety testing and the current initiatives implemented by European, North American, and Asian-Pacific stakeholders on 3Rs implementation and regulatory acceptance. The events contributed to a better understanding of the barriers to 3Rs implementation. Participants highlighted the need for open communication, continued collaboration between stakeholders, and international harmonization of regulatory requirements to help accelerate acceptance. Despite the challenges, the countries represented at this three-part event have shared their commitments to advancing the acceptance of alternative methods.


Asunto(s)
Vacunas , Humanos , Animales , Control de Calidad , Potencia de la Vacuna , Alternativas a las Pruebas en Animales
9.
Small ; 18(11): e2105619, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35064635

RESUMEN

The recent introduction of slow vacuum filtration (SVF) technology has shown great promise for reproducibly creating high-quality, large-area aligned films of single-wall carbon nanotubes (SWCNTs) from solution-based dispersions. Despite clear advantages over other SWCNT alignment techniques, SVF remains in the developmental stages due to a lack of an agreed-upon alignment mechanism, a hurdle which hinders SVF optimization. In this work, the filter membrane surface is modified to show how the resulting SWCNT nematic order can be significantly enhanced. It is observed that directional mechanical grooving on filter membranes does not play a significant role in SWCNT alignment, despite the tendency for nanotubes to follow the groove direction. Chemical treatments to the filter membrane are shown to increase SWCNT alignment by nearly 1/3. These findings suggest that membrane surface structure acts to create a directional flow along the filter membrane surface that can produce global SWCNT alignment during SVF, rather serving as an alignment template.


Asunto(s)
Nanotubos de Carbono , Nanotubos de Carbono/química , Vacio
10.
J Wound Care ; 31(Sup4a): S1-S19, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35404690

RESUMEN

FOREWORD. WOUND HYGIENE: THE NEXT STAGE: Since a panel published the first consensus document on Wound Hygiene in March 2020, there has been a flurry of activity in support of this newly established concept in proactive wound healing.1 The document concluded that all wounds, particularly hard-to-heal ones, will benefit from Wound Hygiene, which should be initiated at the first referral, following a full holistic assessment to identify the wound aetiology and comorbidities, and then implemented at every dressing change until full healing occurs.1 The consensus has since been bolstered by educational webinars; competency-based skills training and support; development of international Wound Hygiene ambassadors; a survey of 1478 respondents, published in July 2021;2 and a case study supplement, published in January 2022, featuring a range of wound types, anatomies and underlying conditions on the improvements in wound-healing progress that can be achieved.3 Wound Hygiene has gained its own identity and is now a term in and of itself, that encompasses a 4-step protocol of care. It is an antibiofilm approach that is increasingly being used across wound care. The results of the survey2 were particularly encouraging for seeing how far Wound Hygiene has come, and how quickly: More than half (57.4%) had heard of the concept of Wound Hygiene Of those, 75.3% have implemented Wound Hygiene Overall, following implementation of Wound Hygiene, 80.3% of respondents reported improved healing rates.2 However, the top three barriers identified by the survey-lack of confidence, competence and research data-show that there is more to be done to support Wound Hygiene in practice.2 As a result, a consensus panel of international key opinion leaders convened virtually in the summer of 2021 to discuss what has been done so far, the outputs of the survey, and ideas for addressing the unmet needs identified by the results. The result is this publication, which represents an addendum to the initial consensus document, broadening support for implementation of Wound Hygiene. This document will reflect on the reasons Wound Hygiene has been successful in its first two years of implementation, reiterating its DNA: Do not wait to treat hard-to-heal wounds Use a simple 4-step approach Enable all healthcare professionals to implement and use Wound Hygiene. The document will also discuss the evolution of the Wound Hygiene concept, focusing on how and when to implement Wound Hygiene on all tissue types of hard-to-heal wounds, and proposing what these are. The panel has expanded the framework in which Wound Hygiene is used, with the ultimate objective of introducing the concept of 'embedding Wound Hygiene intro a proactive wound healing strategy.' Key inefficiencies are often observed along the journeys of people living with hard-to-heal wounds. The limited number of specialised healthcare professionals and the resulting delays in reaching them may increase the likelihood of a hard-to-heal wound developing. In a world where so much is happening so quickly that we may, at times, feel powerless to drive change, the panel wants to provide further guidance to propel the use of Wound Hygiene. The concept of Wound Hygiene is resonating, and the panel wants you to know that in whatever region you work, in whatever area of clinical practice, you are enabled to make this change. Wielding the 4-step Wound Hygiene protocol consistently is a key action every healthcare professional in every care setting can take to tackle the global wound care crisis. Wound Hygiene has taken off-now, where do we want to land? In a place where Wound Hygiene is practised on all wounds, at every stage, until healing. The panel once again recognises that the community of global healthcare providers should consider their local standards and guidelines when applying the recommendations of this document. To this end, the panel has created a flexible 3-phase framework that situates Wound Hygiene as integral to proactive wound healing. The panel hopes you will continue to implement Wound Hygiene and see the benefits it can bring to people living with wounds, as well as those who care for them.


Asunto(s)
Derivación y Consulta , Cicatrización de Heridas , Consenso , Humanos , Higiene , Encuestas y Cuestionarios
11.
J Wound Care ; 31(Sup1): S1-S32, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35113669

RESUMEN

Non-healing wounds are devastating for patients, potentially causing long-term morbidity and an impaired quality of life. They also incur a huge health economic burden for health-care services. Understanding of the causes of non-healing wounds has increased significantly. While the need to address the underlying aetiology has always been acknowledged, the role of biofilm in delaying or preventing healing is now accepted. There is a consensus on the need to debride the wound to remove biofilm and then prevent its reformation, to kickstart healing. The potential benefits of incorporating an antibiofilm component within the wound bed preparation framework are clear. However, such a strategy needs to be flexible enough so that it can be implemented by all practitioners, regardless of their expertise or specialty. Wound Hygiene does this. This supplement describes the Wound Hygiene protocol, and includes a selection of case studies on different wound types, demonstrating its ease of use and effectiveness in clinical practice.


Asunto(s)
Calidad de Vida , Cicatrización de Heridas , Biopelículas , Humanos , Higiene
12.
Angew Chem Int Ed Engl ; 60(43): 23134-23141, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34424583

RESUMEN

In targeting reduced valent lanthanide chalcogenides, we report the first nanoparticle synthesis of the mixed-valent ferromagnets Eu3 S4 and EuSm2 S4 . Using divalent lanthanide halides with bis(trimethylsilyl)sulfide and oleylamine, we prepared nanoparticles of EuS, Eu3 S4 , EuSm2 S4 , SmS1.9 , and Sm3 S4 . All nanoparticle phases were identified using powder X-ray diffraction, transmission electron microscopy was used to confirm morphology and nanoparticle size, and magnetic susceptibility measurements for determining the ordering temperatures and valence. The UV/Vis, Raman and X-ray photoelectron spectroscopies for each phase were compared. Surprisingly, the phase is influenced by the halide and the reaction temperature, where EuCl2 formed EuS while EuI2 formed Eu3 S4 , highlighting the role of kinetics in phase stabilization. Interestingly, at lower temperatures EuI2 initially forms EuS, and converts over time to Eu3 S4 .

13.
Nano Lett ; 19(10): 7256-7264, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31507183

RESUMEN

Over the past decade, substantial progress has been made in the chemical control (chiral enrichment, length sorting, handedness selectivity, and filling substance) of single-wall carbon nanotubes (SWCNTs). Recently, it was shown that large, horizontally aligned films can be created out of postprocessed SWCNT solutions. Here, we use machine-vision automation and parallelization to simultaneously produce globally aligned SWCNT films using pressure-driven filtration. Feedback control enables filtration to occur with a constant flow rate that not only improves the nematic ordering of the SWCNT films but also provides the ability to align a wide range of SWCNT types and on a variety of nanoporous membranes using the same filtration parameters. Using polarized optical spectroscopic techniques, we show that under standard implementation, meniscus combing produces a two-dimensional radial SWCNT alignment on one side of the film. After we flatten the meniscus through silanization, spatially resolved nematicity maps on both sides of the SWCNT film reveal global alignment across the entire structure. From experiments changing ionic strength and membrane charging, we provide evidence that the SWCNT alignment mechanism stems from an interplay of intertube interactions and ordered membrane charging. This work opens up the possibility of creating globally aligned SWCNT film structures for a new generation of nanotube electronics and optical control elements.

14.
Carbon N Y ; 1542019.
Artículo en Inglés | MEDLINE | ID: mdl-32165760

RESUMEN

We have demonstrated the millimeter-scale fabrication of monolayer epitaxial graphene p-n junction devices using simple ultraviolet photolithography, thereby significantly reducing device processing time compared to that of electron beam lithography typically used for obtaining sharp junctions. This work presents measurements yielding nonconventional, fractional multiples of the typical quantized Hall resistance at ν = 2 (R H ≈ 12906 Ω) that take the form: a b R H . Here, a and b have been observed to take on values such 1, 2, 3, and 5 to form various coefficients of R H. Additionally, we provide a framework for exploring future device configurations using the LTspice circuit simulator as a guide to understand the abundance of available fractions one may be able to measure. These results support the potential for drastically simplifying device processing time and may be used for many other two-dimensional materials.

15.
Carbon N Y ; 1422019.
Artículo en Inglés | MEDLINE | ID: mdl-31097837

RESUMEN

Monolayer epitaxial graphene (EG) has been shown to have clearly superior properties for the development of quantized Hall resistance (QHR) standards. One major difficulty with QHR devices based on EG is that their electrical properties drift slowly over time if the device is stored in air due to adsorption of atmospheric molecular dopants. The crucial parameter for device stability is the charge carrier density, which helps determine the magnetic flux density required for precise QHR measurements. This work presents one solution to this problem of instability in air by functionalizing the surface of EG devices with chromium tricarbonyl -Cr(CO)3. Observations of carrier density stability in air over the course of one year are reported, as well as the ability to tune the carrier density by annealing the devices. For low temperature annealing, the presence of Cr(CO)3 stabilizes the electrical properties and allows for the reversible tuning of the carrier density in millimeter-scale graphene devices close to the Dirac point. Precision measurements in the quantum Hall regime show no detrimental effect on the carrier mobility.

16.
Artículo en Inglés | MEDLINE | ID: mdl-34877178

RESUMEN

The growth of transition metal dichalcogenide (TMDC) alloys provides an opportunity to experimentally access information elucidating how optical properties change with gradual substitutions in the lattice compared with their pure compositions. In this work, we performed growths of alloyed crystals with stoichiometric compositions between pure forms of NbSe2 and WSe2, followed by an optical analysis of those alloys by utilizing Raman spectroscopy and spectroscopic ellipsometry.

17.
J Wound Care ; 28(Sup9a): S4-S10, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31536459

RESUMEN

Chronic wound exudate is associated with stalled or delayed healing. Excess amounts will break down healthy tissue, increasing the production of slough and necrotic tissue. This will also create an ideal environment for microbial proliferation and place the surrounding skin at risk of maceration. It is vital, therefore, to select an absorbent dressing that can retain excessive exudate. This article describes how to achieve this. It introduces an absorbent dressing, Aquacel Foam, which not only retains exudate, but can also help remove devitalised tissue and promote healing.


Asunto(s)
Vendas Hidrocoloidales , Carboximetilcelulosa de Sodio/administración & dosificación , Exudados y Transudados , Cicatrización de Heridas , Humanos
18.
Biologicals ; 56: 13-18, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30126631

RESUMEN

Approximately one-third of the reportable USDA Category D and E laboratory animals in the United States are expended on the potency testing of leptospiral vaccines by the codified hamster vaccination-challenge assay. Valid tests require ≥80% of challenge controls to succumb to disease and an LD50 between 10 and 10,000. This work evaluates the risk associated with the removal of LD50 limits; thereby, eliminating back-titration hamsters from in vivo potency assays for Leptospira (L.) serogroups Canicola and Icterohaemorrhagiae. The impact was assessed through 1) retrospective analysis of industry and CVB serial release data from July 2011-April 2015 and 2) evaluation through vaccination-challenge assays. For the initial vaccination-challenge assays (n = 3/serogroup), one group received potent bacterin (PB) and six groups received subpotent bacterins (SB1-SB6). PB and SB1 were challenged with a single dilution of Leptospira between 10 and 10,000 LD50. SB2-SB6 received serial dilutions of more concentrated challenge. Based on the retrospective analysis and in vivo assays, 80% of the challenge controls succumbing to disease reasonably ensured the minimal LD50 was administered. Subpotent vaccines were not at increased risk for being deemed potent when challenged with >10,000 LD50, but potent vaccines were at risk of being deemed subpotent when challenged with >10,000 LD50.


Asunto(s)
Vacunas Bacterianas/inmunología , Leptospira interrogans serovar canicola/inmunología , Leptospira interrogans serovar icterohaemorrhagiae/inmunología , Leptospirosis/veterinaria , Vacunación/veterinaria , Potencia de la Vacuna , Drogas Veterinarias/inmunología , Bienestar del Animal , Animales , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/toxicidad , Cricetinae , Leptospirosis/prevención & control , Dosificación Letal Mediana , Estudios Retrospectivos , Estados Unidos , Drogas Veterinarias/administración & dosificación , Drogas Veterinarias/toxicidad
19.
Microelectron Eng ; 194: 51-55, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29881131

RESUMEN

Homogeneous, single-crystal, monolayer epitaxial graphene (EG) is the one of most promising candidates for the advancement of quantized Hall resistance (QHR) standards. A remaining challenge for the electrical characterization of EG-based quantum Hall devices as a useful tool for metrology is that they are electrically unstable when exposed to air due to the adsorption of and interaction with atmospheric molecular dopants. The resulting changes in the charge carrier density become apparent by variations in the surface conductivity, the charge carrier mobility, and may result in a transition from n-type to p-type conductivity. This work evaluates the use of Parylene C and Parylene N as passivation layers for EG. Electronic transport of EG quantum Hall devices and non-contact microwave perturbation measurements of millimeter-sized areas of EG are both performed on bare and Parylene coated samples to test the efficacy of the passivation layers. The reported results, showing a significant improvement in passivation due to Parylene deposition, suggest a method for the mass production of millimeter-scale graphene devices with stable electrical properties.

20.
Nano Lett ; 17(10): 5897-5907, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28820602

RESUMEN

The strong in-plane anisotropy of rhenium disulfide (ReS2) offers an additional physical parameter that can be tuned for advanced applications such as logic circuits, thin-film polarizers, and polarization-sensitive photodetectors. ReS2 also presents advantages for optoelectronics, as it is both a direct-gap semiconductor for few-layer thicknesses (unlike MoS2 or WS2) and stable in air (unlike black phosphorus). Raman spectroscopy is one of the most powerful characterization techniques to nondestructively and sensitively probe the fundamental photophysics of a 2D material. Here, we perform a thorough study of the resonant Raman response of the 18 first-order phonons in ReS2 at various layer thicknesses and crystal orientations. Remarkably, we discover that, as opposed to a general increase in intensity of all of the Raman modes at excitonic transitions, each of the 18 modes behave differently relative to each other as a function of laser excitation, layer thickness, and orientation in a manner that highlights the importance of electron-phonon coupling in ReS2. In addition, we correct an unrecognized error in the calculation of the optical interference enhancement of the Raman signal of transition metal dichalcogenides on SiO2/Si substrates that has propagated through various reports. For ReS2, this correction is critical to properly assessing the resonant Raman behavior. We also implemented a perturbation approach to calculate frequency-dependent Raman intensities based on first-principles and demonstrate that, despite the neglect of excitonic effects, useful trends in the Raman intensities of monolayer and bulk ReS2 at different laser energies can be accurately captured. Finally, the phonon dispersion calculated from first-principles is used to address the possible origins of unexplained peaks observed in the Raman spectra, such as infrared-active modes, defects, and second-order processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA