Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 602(7896): 280-286, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34937943

RESUMEN

Grafting is possible in both animals and plants. Although in animals the process requires surgery and is often associated with rejection of non-self, in plants grafting is widespread, and has been used since antiquity for crop improvement1. However, in the monocotyledons, which represent the second largest group of terrestrial plants and include many staple crops, the absence of vascular cambium is thought to preclude grafting2. Here we show that the embryonic hypocotyl allows intra- and inter-specific grafting in all three monocotyledon groups: the commelinids, lilioids and alismatids. We show functional graft unions through histology, application of exogenous fluorescent dyes, complementation assays for movement of endogenous hormones, and growth of plants to maturity. Expression profiling identifies genes that unify the molecular response associated with grafting in monocotyledons and dicotyledons, but also gene families that have not previously been associated with tissue union. Fusion of susceptible wheat scions to oat rootstocks confers resistance to the soil-borne pathogen Gaeumannomyces graminis. Collectively, these data overturn the consensus that monocotyledons cannot form graft unions, and identify the hypocotyl (mesocotyl in grasses) as a meristematic tissue that allows this process. We conclude that graft compatibility is a shared ability among seed-bearing plants.


Asunto(s)
Avena , Raíces de Plantas , Brotes de la Planta , Trasplantes , Triticum , Ascomicetos/patogenicidad , Avena/embriología , Avena/microbiología , Hipocótilo , Meristema , Raíces de Plantas/embriología , Raíces de Plantas/microbiología , Brotes de la Planta/embriología , Brotes de la Planta/microbiología , Triticum/embriología , Triticum/microbiología
2.
Plant Cell ; 36(7): 2491-2511, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38598645

RESUMEN

Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are a prominent class of intracellular immune receptors in plants. However, our understanding of plant NLR structure and function is limited to the evolutionarily young flowering plant clade. Here, we describe an extended spectrum of NLR diversity across divergent plant lineages and demonstrate the structural and functional similarities of N-terminal domains that trigger immune responses. We show that the broadly distributed coiled-coil (CC) and toll/interleukin-1 receptor (TIR) domain families of nonflowering plants retain immune-related functions through translineage activation of cell death in the angiosperm Nicotiana benthamiana. We further examined a CC subfamily specific to nonflowering lineages and uncovered an essential N-terminal MAEPL motif that is functionally comparable with motifs in resistosome-forming CC-NLRs. Consistent with a conserved role in immunity, the ectopic activation of CCMAEPL in the nonflowering liverwort Marchantia polymorpha led to profound growth inhibition, defense gene activation, and signatures of cell death. Moreover, comparative transcriptomic analyses of CCMAEPL activity delineated a common CC-mediated immune program shared across evolutionarily divergent nonflowering and flowering plants. Collectively, our findings highlight the ancestral nature of NLR-mediated immunity during plant evolution that dates its origin to at least ∼500 million years ago.


Asunto(s)
Marchantia , Proteínas NLR , Nicotiana , Proteínas de Plantas , Proteínas NLR/genética , Proteínas NLR/metabolismo , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Marchantia/genética , Marchantia/inmunología , Marchantia/metabolismo , Dominios Proteicos , Filogenia , Inmunidad de la Planta/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
PLoS Comput Biol ; 19(2): e1010893, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36848387

RESUMEN

Influenza pandemics typically occur in multiple waves of infection, often associated with initial emergence of a novel virus, followed (in temperate regions) by a resurgence accompanying the onset of the annual influenza season. Here, we examined whether data collected from an initial pandemic wave could be informative, for the need to implement non-pharmaceutical measures in any resurgent wave. Drawing from the 2009 H1N1 pandemic in 10 states in the USA, we calibrated simple mathematical models of influenza transmission dynamics to data for laboratory confirmed hospitalisations during the initial 'spring' wave. We then projected pandemic outcomes (cumulative hospitalisations) during the fall wave, and compared these projections with data. Model results showed reasonable agreement for all states that reported a substantial number of cases in the spring wave. Using this model we propose a probabilistic decision framework that can be used to determine the need for preemptive measures such as postponing school openings, in advance of a fall wave. This work illustrates how model-based evidence synthesis, in real-time during an early pandemic wave, could be used to inform timely decisions for pandemic response.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Humanos , Estaciones del Año , Hospitalización , Instituciones Académicas
4.
Ann Bot ; 133(3): 459-472, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38181407

RESUMEN

BACKGROUND AND AIMS: Transcriptome sequencing is a cost-effective approach that allows researchers to study a broad range of questions. However, to preserve RNA for transcriptome sequencing, tissue is often kept in special conditions, such as immediate ultracold freezing. Here, we demonstrate that RNA can be obtained from 6-month-old, field-collected samples stored in silica gel at room temperature. Using these transcriptomes, we explore the evolutionary relationships of the genus Pitcairnia (Bromeliaceae) in the Dominican Republic and infer barriers to gene flow. METHODS: We extracted RNA from silica-dried leaf tissue from 19 Pitcairnia individuals collected across the Dominican Republic. We used a series of macro- and micro-evolutionary approaches to examine the relationships and patterns of gene flow among individuals. KEY RESULTS: We produced high-quality transcriptomes from silica-dried material and demonstrated that evolutionary relationships on the island match geography more closely than species delimitation methods. A population genetic examination indicates that a combination of ecological and geographical features presents barriers to gene flow in Pitcairnia. CONCLUSIONS: Transcriptomes can be obtained from silica-preserved tissue. The genetic diversity among Pitcairnia populations does not warrant classification as separate species, but the Dominican Republic contains several barriers to gene flow, notably the Cordillera Central mountain range.


Asunto(s)
Flujo Génico , Transcriptoma , Humanos , Transcriptoma/genética , Región del Caribe , Hojas de la Planta/genética , ARN
5.
Am J Bot ; : e16350, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825760

RESUMEN

PREMISE: The Caryophyllaceae (the carnation family) have undergone multiple transitions into colder climates and convergence on cushion plant adaptation, indicating that they may provide a natural system for cold adaptation research. Previous research has suggested that putative ancient whole-genome duplications (WGDs) are correlated with niche shifts into colder climates across the Caryophyllales. Here, we explored the genomic changes potentially involved in one of these discovered shifts in the Caryophyllaceae. METHODS: We constructed a data set combining 26 newly generated transcriptomes with 45 published transcriptomes, including 11 cushion plant species across seven genera. With this data set, we inferred a dated phylogeny for the Caryophyllaceae and mapped ancient WGDs and gene duplications onto the phylogeny. We also examined functional groups enriched for gene duplications related to the climatic shift. RESULTS: The ASTRAL topology was mostly congruent with the current consensus of relationships within the family. We inferred 15 putative ancient WGDs in the family, including eight that have not been previously published. The oldest ancient WGD (ca. 64.4-56.7 million years ago), WGD1, was found to be associated with a shift into colder climates by previous research. Gene regions associated with ubiquitination were overrepresented in gene duplications retained after WGD1 and those convergently retained by cushion plants in Colobanthus and Eremogone, along with other functional annotations. CONCLUSIONS: Gene family expansions induced by ancient WGDs may have contributed to the shifts to cold climatic niches in the Caryophyllaceae. Transcriptomic data are crucial resources that help unravel heterogeneity in deep-time evolutionary patterns in plants.

6.
J Acoust Soc Am ; 155(5): 3015-3026, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717207

RESUMEN

Sound speed is a critical parameter in ocean acoustic studies, as it determines the propagation and interpretation of recorded sounds. The potential for exploiting oceanic vessel noise as a sound source of opportunity to estimate ocean sound speed profile is investigated. A deep learning-based inversion scheme, relying upon the underwater radiated noise of moving vessels measured by a single hydrophone, is proposed. The dataset used for this study consists of Automatic Identification System data and acoustic recordings of maritime vessels transiting through the Santa Barbara Channel between January 2015 and December 2017. The acoustic recordings and vessel descriptors are used as predictors for regressing sound speed for each meter in the top 200 m of the water column, where sound speeds are most variable. Multiple (typically ranging between 4 and 10) transits were recorded each day; therefore, this dataset provides an opportunity to investigate whether multiple acoustic observations can be leveraged together to improve inversion estimates. The proposed single-transit and multi-transit models resulted in depth-averaged root-mean-square errors of 1.79 and 1.55 m/s, respectively, compared to the seasonal average predictions of 2.80 m/s.

7.
Mol Biol Evol ; 39(3)2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35212724

RESUMEN

Dissecting the relationship between gene function and substitution rates is key to understanding genome-wide patterns of molecular evolution. Biochemical pathways provide powerful systems for investigating this relationship because the functional role of each gene is often well characterized. Here, we investigate the evolution of the flavonoid pigment pathway in the colorful Petunieae clade of the tomato family (Solanaceae). This pathway is broadly conserved in plants, both in terms of its structural elements and its MYB, basic helix-loop-helix, and WD40 transcriptional regulators, and its function has been extensively studied, particularly in model species of petunia. We built a phylotranscriptomic data set for 69 species of Petunieae to infer patterns of molecular evolution across pathway genes and across lineages. We found that transcription factors exhibit faster rates of molecular evolution (dN/dS) than their targets, with the highly specialized MYB genes evolving fastest. Using the largest comparative data set to date, we recovered little support for the hypothesis that upstream enzymes evolve slower than those occupying more downstream positions, although expression levels do predict molecular evolutionary rates. Although shifts in floral pigmentation were only weakly related to changes affecting coding regions, we found a strong relationship with the presence/absence patterns of MYB transcripts. Intensely pigmented species express all three main MYB anthocyanin activators in petals, whereas pale or white species express few or none. Our findings reinforce the notion that pathway regulators have a dynamic history, involving higher rates of molecular evolution than structural components, along with frequent changes in expression during color transitions.


Asunto(s)
Flores , Factores de Transcripción , Antocianinas , Flavonoides/genética , Flavonoides/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Pigmentación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo
8.
Syst Biol ; 71(4): 943-958, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34240209

RESUMEN

Gene tree conflict is common and finding methods to analyze and alleviate the negative effects that conflict has on species tree analysis is a crucial part of phylogenomics. This study aims to expand the discussion of inferring species trees and molecular branch lengths when conflict is present. Conflict is typically examined in two ways: inferring its prevalence and inferring the influence of the individual genes (how strongly one gene supports any given topology compared to an alternative topology). Here, we examine a procedure for incorporating both conflict and the influence of genes in order to infer evolutionary relationships. All supported relationships in the gene trees are analyzed and the likelihood of the genes constrained to these relationships is summed to provide a likelihood for the relationship. Consensus tree assembly is conducted based on the sum of likelihoods for a given relationship and choosing relationships based on the most likely relationship assuming it does not conflict with a relationship that has a higher likelihood score. If it is not possible for all most likely relationships to be combined into a single bifurcating tree then multiple trees are produced and a consensus tree with a polytomy is created. This procedure allows for more influential genes to have a greater influence on an inferred relationship, does not assume conflict has arisen from any one source and does not force the data set to produce a single bifurcating tree. Using this approach, on three empirical data sets, we examine and discuss the relationship between influence and prevalence of gene tree conflict. We find that in one of the data sets, assembling a bifurcating consensus tree solely composed of the most likely relationships is impossible. To account for conflict in molecular rate analysis we also introduce a concordance-based approach to the summary and estimation of branch lengths suitable for downstream comparative analyses. We demonstrate through simulation that even under high levels of stochastic conflict, the mean and median of the concordant rates recapitulate the true molecular rate better than using a supermatrix approach. Using a large phylogenomic data set, we examine rate heterogeneity across concordant genes with a focus on the branch subtending crown angiosperms. Notably, we find highly variable rates of evolution along the branch subtending crown angiosperms. The approaches outlined here have several limitations, but they also represent some alternative methods for harnessing the complexity of phylogenomic data sets and enrich our inferences of both species relationships and evolutionary processes.[Branch length estimation; consensus tree; gene tree conflict; gene tree filtering; phylogenetics; phylogenomics.].


Asunto(s)
Magnoliopsida , Filogenia
9.
Surgeon ; 21(4): 235-241, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35697552

RESUMEN

INTRODUCTION: The importance of shared decision making (SDM) for informed consent has been emphasised in the updated regulatory guidelines. Errors of completion, legibility and omission have been associated with paper-based consent forms. We introduced a digital consent process and compared it against a paper-based process for quality and patient reported involvement in shared decision making. METHODS: 223 patients were included in this multi-site, single centre study. Patient consent documentation was by either a paper consent form or the Concentric digital consent platform. Consent forms were assessed for errors of legibility, completion and accuracy of content. Core risks for 20 orthopaedic operations were pre-defined by a Delphi round of experts and forms analysed for omission of these risks. SDM was determined via the 'collaboRATE Top Score', a validated measure for gold-standard SDM. RESULTS: 72% (n = 78/109) of paper consent forms contained ≥1 error compared to 0% (n = 0/114) of digital forms (P < 0.0001). Core risks were unintentionally omitted in 63% (n = 68/109) of paper-forms compared to less than 2% (n = 2/114) of digital consent forms (P < 0.0001). 72% (n = 82/114) of patients giving consent digitally reported gold-standard SDM compared to 28% (n = 31/109) with paper consent (P < 0.001). CONCLUSION: Implementation of a digital consent process has been shown to reduce both error rate and the omission of core risks on consent forms whilst increasing the quality of SDM. This novel finding suggests that using digital consent can improve both the quality of informed consent and the patient experience of SDM.


Asunto(s)
Toma de Decisiones Conjunta , Ortopedia , Humanos , Toma de Decisiones , Participación del Paciente , Consentimiento Informado
10.
J Infect Dis ; 224(12 Suppl 2): S218-S227, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34469549

RESUMEN

Since 2010, the introduction of an effective serogroup A meningococcal conjugate vaccine has led to the near-elimination of invasive Neisseria meningitidis serogroup A disease in Africa's meningitis belt. However, a significant burden of disease and epidemics due to other bacterial meningitis pathogens remain in the region. High-quality surveillance data with laboratory confirmation is important to monitor circulating bacterial meningitis pathogens and design appropriate interventions, but complete testing of all reported cases is often infeasible. Here, we use case-based surveillance data from 5 countries in the meningitis belt to determine how accurately estimates of the distribution of causative pathogens would represent the true distribution under different laboratory testing strategies. Detailed case-based surveillance data was collected by the MenAfriNet surveillance consortium in up to 3 seasons from participating districts in 5 countries. For each unique country-season pair, we simulated the accuracy of laboratory surveillance by repeatedly drawing subsets of tested cases and calculating the margin of error of the estimated proportion of cases caused by each pathogen (the greatest pathogen-specific absolute error in proportions between the subset and the full set of cases). Across the 12 country-season pairs analyzed, the 95% credible intervals around estimates of the proportion of cases caused by each pathogen had median widths of ±0.13, ±0.07, and ±0.05, respectively, when random samples of 25%, 50%, and 75% of cases were selected for testing. The level of geographic stratification in the sampling process did not meaningfully affect accuracy estimates. These findings can inform testing thresholds for laboratory surveillance programs in the meningitis belt.


Asunto(s)
Meningitis Bacterianas/diagnóstico , Vigilancia de la Población/métodos , África/epidemiología , Humanos , Meningitis Bacterianas/epidemiología , Meningitis Bacterianas/microbiología , Vigilancia en Salud Pública
11.
Emerg Infect Dis ; 27(12): 2999-3008, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34698628

RESUMEN

Outcomes and costs of coronavirus disease (COVID-19) contact tracing are limited. During March-May 2020, we constructed transmission chains from 184 index cases and 1,499 contacts in Salt Lake County, Utah, USA, to assess outcomes and estimate staff time and salaries. We estimated 1,102 staff hours and $29,234 spent investigating index cases and contacts. Among contacts, 374 (25%) had COVID-19; secondary case detection rate was ≈31% among first-generation contacts, ≈16% among second- and third-generation contacts, and ≈12% among fourth-, fifth-, and sixth-generation contacts. At initial interview, 51% (187/370) of contacts were COVID-19-positive; 35% (98/277) became positive during 14-day quarantine. Median time from symptom onset to investigation was 7 days for index cases and 4 days for first-generation contacts. Contact tracing reduced the number of cases between contact generations and time between symptom onset and investigation but required substantial resources. Our findings can help jurisdictions allocate resources for contact tracing.


Asunto(s)
COVID-19 , Trazado de Contacto , Humanos , Cuarentena , SARS-CoV-2 , Utah/epidemiología
12.
Mol Biol Evol ; 37(11): 3380-3388, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32658966

RESUMEN

Most phylogenetic analyses assume that a single evolutionary history underlies one gene. However, both biological processes and errors can cause intragenic conflict. The extent to which this conflict is present in empirical data sets is not well documented, but if common, could have far-reaching implications for phylogenetic analyses. We examined several large phylogenomic data sets from diverse taxa using a fast and simple method to identify well-supported intragenic conflict. We found conflict to be highly variable between data sets, from 1% to >92% of genes investigated. We analyzed four exemplar genes in detail and analyzed simulated data under several scenarios. Our results suggest that alignment error may be one major source of conflict, but other conflicts remain unexplained and may represent biological signal or other errors. Whether as part of data analysis pipelines or to explore biologically processes, analyses of within-gene phylogenetic signal should become common.


Asunto(s)
Conjuntos de Datos como Asunto , Modelos Genéticos , Filogenia , Animales , Simulación por Computador , Insectos/genética , Mamíferos/genética
13.
Syst Biol ; 69(3): 579-592, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31747023

RESUMEN

Studies have demonstrated that pervasive gene tree conflict underlies several important phylogenetic relationships where different species tree methods produce conflicting results. Here, we present a means of dissecting the phylogenetic signal for alternative resolutions within a data set in order to resolve recalcitrant relationships and, importantly, identify what the data set is unable to resolve. These procedures extend upon methods for isolating conflict and concordance involving specific candidate relationships and can be used to identify systematic error and disambiguate sources of conflict among species tree inference methods. We demonstrate these on a large phylogenomic plant data set. Our results support the placement of Amborella as sister to the remaining extant angiosperms, Gnetales as sister to pines, and the monophyly of extant gymnosperms. Several other contentious relationships, including the resolution of relationships within the bryophytes and the eudicots, remain uncertain given the low number of supporting gene trees. To address whether concatenation of filtered genes amplified phylogenetic signal for relationships, we implemented a combinatorial heuristic to test combinability of genes. We found that nested conflicts limited the ability of data filtering methods to fully ameliorate conflicting signal amongst gene trees. These analyses confirmed that the underlying conflicting signal does not support broad concatenation of genes. Our approach provides a means of dissecting a specific data set to address deep phylogenetic relationships while also identifying the inferential boundaries of the data set. [Angiosperms; coalescent; gene-tree conflict; genomics; phylogenetics; phylogenomics.].


Asunto(s)
Clasificación/métodos , Filogenia , Plantas/clasificación , Genes de Plantas/genética , Plantas/genética
14.
Mol Biol Evol ; 36(1): 112-126, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30371871

RESUMEN

Several plant lineages have evolved adaptations that allow survival in extreme and harsh environments including many families within the plant clade Portulacineae (Caryophyllales) such as the Cactaceae, Didiereaceae, and Montiaceae. Here, using newly generated transcriptomic data, we reconstructed the phylogeny of Portulacineae and examined potential correlates between molecular evolution and adaptation to harsh environments. Our phylogenetic results were largely congruent with previous analyses, but we identified several early diverging nodes characterized by extensive gene tree conflict. For particularly contentious nodes, we present detailed information about the phylogenetic signal for alternative relationships. We also analyzed the frequency of gene duplications, confirmed previously identified whole genome duplications (WGD), and proposed a previously unidentified WGD event within the Didiereaceae. We found that the WGD events were typically associated with shifts in climatic niche but did not find a direct association with WGDs and diversification rate shifts. Diversification shifts occurred within the Portulacaceae, Cactaceae, and Anacampserotaceae, and whereas these did not experience WGDs, the Cactaceae experienced extensive gene duplications. We examined gene family expansion and molecular evolutionary patterns with a focus on genes associated with environmental stress responses and found evidence for significant gene family expansion in genes with stress adaptation and clades found in extreme environments. These results provide important directions for further and deeper examination of the potential links between molecular evolutionary patterns and adaptation to harsh environments.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Caryophyllales/genética , Frío , Sequías , Familia de Multigenes , Poliploidía
15.
Am J Bot ; 107(5): 773-789, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32350864

RESUMEN

PREMISE: Large genomic data sets offer the promise of resolving historically recalcitrant species relationships. However, different methodologies can yield conflicting results, especially when clades have experienced ancient, rapid diversification. Here, we analyzed the ancient radiation of Ericales and explored sources of uncertainty related to species tree inference, conflicting gene tree signal, and the inferred placement of gene and genome duplications. METHODS: We used a hierarchical clustering approach, with tree-based homology and orthology detection, to generate six filtered phylogenomic matrices consisting of data from 97 transcriptomes and genomes. Support for species relationships was inferred from multiple lines of evidence including shared gene duplications, gene tree conflict, gene-wise edge-based analyses, concatenation, and coalescent-based methods, and is summarized in a consensus framework. RESULTS: Our consensus approach supported a topology largely concordant with previous studies, but suggests that the data are not capable of resolving several ancient relationships because of lack of informative characters, sensitivity to methodology, and extensive gene tree conflict correlated with paleopolyploidy. We found evidence of a whole-genome duplication before the radiation of all or most ericalean families, and demonstrate that tree topology and heterogeneous evolutionary rates affect the inferred placement of genome duplications. CONCLUSIONS: We provide several hypotheses regarding the history of Ericales, and confidently resolve most nodes, but demonstrate that a series of ancient divergences are unresolvable with these data. Whether paleopolyploidy is a major source of the observed phylogenetic conflict warrants further investigation.


Asunto(s)
Ericales , Evolución Biológica , Consenso , Genoma , Filogenia
16.
Am Nat ; 193(4): 530-544, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30912965

RESUMEN

Performance curves are valuable tools for quantifying the fundamental niches of organisms and testing hypotheses about evolution, life-history trade-offs, and the drivers of variation in species' distribution patterns. Here, we present a novel Bayesian method for characterizing performance curves that facilitates comparisons among species. We then use this model to quantify and compare the hydrological performance curves of 14 different taxa in the genus Lasthenia, an ecologically diverse clade of plants that collectively occupy a variety of habitats with unique hydrological features, including seasonally flooded wetlands called vernal pools. We conducted a growth chamber experiment to measure each taxon's fitness across five hydrological treatments that ranged from severe drought to extended flooding, and we identified differences in hydrological performance curves that explain their associations with vernal pool and terrestrial habitats. Our analysis revealed that the distribution of vernal pool taxa in the field does not reflect their optimal hydrological environments: all taxa, regardless of habitat affinity, have highest fitness under similar hydrological conditions of saturated soil without submergence. We also found that a taxon's relative position across flood gradients within vernal pools is best predicted by the height of its performance curve. These results demonstrate the utility of our approach for generating insights into when and how performance curves evolve among taxa as they diversify into distinct environments. To facilitate its use, the modeling framework has been developed into an R package.


Asunto(s)
Asteraceae/fisiología , Ecosistema , Aptitud Genética , Modelos Biológicos , Agua/fisiología , Teorema de Bayes , Evolución Biológica , Sequías , Inundaciones , Programas Informáticos
17.
Syst Biol ; 67(5): 916-924, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29893968

RESUMEN

Recent studies have demonstrated that conflict is common among gene trees in phylogenomic studies, and that less than one percent of genes may ultimately drive species tree inference in supermatrix analyses. Herein, we examined two data sets where supermatrix and coalescent-based species trees conflict. We identified two highly influential "outlier" genes in each data set. When removed from each data set, the inferred supermatrix trees matched the topologies obtained from coalescent analyses. We also demonstrate that, while the outlier genes in the vertebrate data set have been shown in a previous study to be the result of errors in orthology detection, the outlier genes from a plant data set did not exhibit any obvious systematic error, and therefore, may be the result of some biological process yet to be determined. While topological comparisons among a small set of alternate topologies can be helpful in discovering outlier genes, they can be limited in several ways, such as assuming all genes share the same topology. Coalescent species tree methods relax this assumption but do not explicitly facilitate the examination of specific edges. Coalescent methods often also assume that conflict is the result of incomplete lineage sorting. Herein, we explored a framework that allows for quickly examining alternative edges and support for large phylogenomic data sets that does not assume a single topology for all genes. For both data sets, these analyses provided detailed results confirming the support for coalescent-based topologies. This framework suggests that we can improve our understanding of the underlying signal in phylogenomic data sets by asking more targeted edge-based questions.


Asunto(s)
Caryophyllales/clasificación , Genómica , Filogenia , Vertebrados/clasificación , Animales , Caryophyllales/genética , Modelos Genéticos , Vertebrados/genética
18.
Bioinformatics ; 33(12): 1886-1888, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28174903

RESUMEN

SUMMARY: The ease with which phylogenomic data can be generated has drastically escalated the computational burden for even routine phylogenetic investigations. To address this, we present phyx : a collection of programs written in C ++ to explore, manipulate, analyze and simulate phylogenetic objects (alignments, trees and MCMC logs). Modelled after Unix/GNU/Linux command line tools, individual programs perform a single task and operate on standard I/O streams that can be piped to quickly and easily form complex analytical pipelines. Because of the stream-centric paradigm, memory requirements are minimized (often only a single tree or sequence in memory at any instance), and hence phyx is capable of efficiently processing very large datasets. AVAILABILITY AND IMPLEMENTATION: phyx runs on POSIX-compliant operating systems. Source code, installation instructions, documentation and example files are freely available under the GNU General Public License at https://github.com/FePhyFoFum/phyx. CONTACT: eebsmith@umich.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genómica/métodos , Filogenia , Programas Informáticos
19.
New Phytol ; 217(2): 855-870, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28944472

RESUMEN

Studies of the macroevolutionary legacy of polyploidy are limited by an incomplete sampling of these events across the tree of life. To better locate and understand these events, we need comprehensive taxonomic sampling as well as homology inference methods that accurately reconstruct the frequency and location of gene duplications. We assembled a data set of transcriptomes and genomes from 168 species in Caryophyllales, of which 43 transcriptomes were newly generated for this study, representing one of the most densely sampled genomic-scale data sets available. We carried out phylogenomic analyses using a modified phylome strategy to reconstruct the species tree. We mapped the phylogenetic distribution of polyploidy events by both tree-based and distance-based methods, and explicitly tested scenarios for allopolyploidy. We identified 26 ancient and more recent polyploidy events distributed throughout Caryophyllales. Two of these events were inferred to be allopolyploidy. Through dense phylogenomic sampling, we show the propensity of polyploidy throughout the evolutionary history of Caryophyllales. We also provide a framework for utilizing transcriptome data to detect allopolyploidy, which is important as it may have different macroevolutionary implications compared with autopolyploidy.


Asunto(s)
Caryophyllales/genética , Poliploidía , Transcriptoma/genética , Ecosistema , Funciones de Verosimilitud , Filogenia , Especificidad de la Especie
20.
New Phytol ; 217(2): 836-854, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28892163

RESUMEN

The role played by whole genome duplication (WGD) in plant evolution is actively debated. WGDs have been associated with advantages such as superior colonization, various adaptations, and increased effective population size. However, the lack of a comprehensive mapping of WGDs within a major plant clade has led to uncertainty regarding the potential association of WGDs and higher diversification rates. Using seven chloroplast and nuclear ribosomal genes, we constructed a phylogeny of 5036 species of Caryophyllales, representing nearly half of the extant species. We phylogenetically mapped putative WGDs as identified from analyses on transcriptomic and genomic data and analyzed these in conjunction with shifts in climatic occupancy and lineage diversification rate. Thirteen putative WGDs and 27 diversification shifts could be mapped onto the phylogeny. Of these, four WGDs were concurrent with diversification shifts, with other diversification shifts occurring at more recent nodes than WGDs. Five WGDs were associated with shifts to colder climatic occupancy. While we find that many diversification shifts occur after WGDs, it is difficult to consider diversification and duplication to be tightly correlated. Our findings suggest that duplications may often occur along with shifts in either diversification rate, climatic occupancy, or rate of evolution.


Asunto(s)
Caryophyllales/genética , Duplicación de Gen , Variación Genética , Caryophyllales/clasificación , Clima , Genoma de Planta , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA