Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Gen Virol ; 103(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35723908

RESUMEN

The family Rhabdoviridae comprises viruses with negative-sense (-) RNA genomes of 10-16 kb. Virions are typically enveloped with bullet-shaped or bacilliform morphology but can also be non-enveloped filaments. Rhabdoviruses infect plants or animals, including mammals, birds, reptiles, amphibians or fish, as well as arthropods, which serve as single hosts or act as biological vectors for transmission to animals or plants. Rhabdoviruses include important pathogens of humans, livestock, fish or agricultural crops. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Rhabdoviridae, which is available at ictv.global/report/rhabdoviridae.


Asunto(s)
Rhabdoviridae , Animales , Aves , Peces , Genoma Viral , Mamíferos , Reptiles , Rhabdoviridae/genética , Virión , Replicación Viral
2.
Arch Virol ; 167(4): 1231-1234, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35043230

RESUMEN

Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.


Asunto(s)
Virus no Clasificados , Virus , Virus ADN , Virus/genética , Escritura
3.
Arch Virol ; 167(11): 2429-2440, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35999326

RESUMEN

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2022. The entire ICTV was invited to vote on 174 taxonomic proposals approved by the ICTV Executive Committee at its annual meeting in July 2021. All proposals were ratified by an absolute majority of the ICTV members. Of note, the Study Groups have started to implement the new rule for uniform virus species naming that became effective in 2021 and mandates the binomial 'Genus_name species_epithet' format with or without Latinization. As a result of this ratification, the names of 6,481 virus species (more than 60 percent of all species names currently recognized by ICTV) now follow this format.


Asunto(s)
Virus , Miembro de Comité , Virus/genética
4.
J Gen Virol ; 102(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33108263

RESUMEN

The family Roniviridae includes the genus Okavirus for three species of viruses with enveloped, rod-shaped virions. The monopartite, positive-sense ssRNA genome (26-27 kb) contains five canonical long open reading frames (ORFs). ORF1a encodes polyprotein pp1a containing proteinase domains. ORF1b is expressed as a large polyprotein pp1ab by ribosomal frameshifting from ORF1a and encodes replication enzymes. ORF2 encodes the nucleoprotein. ORF3 encodes two envelope glycoproteins. ORFX encodes a putative double membrane-spanning protein. Roniviruses infect shrimp but only yellow head virus is highly pathogenic. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Roniviridae, which is available at ictv.global/report/roniviridae.


Asunto(s)
Roniviridae/clasificación , Animales , Genoma Viral , Sistemas de Lectura Abierta , Penaeidae/virología , ARN Viral , Roniviridae/genética , Roniviridae/fisiología , Roniviridae/ultraestructura , Virión/ultraestructura , Replicación Viral
5.
Arch Virol ; 166(9): 2633-2648, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34231026

RESUMEN

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2021. The entire ICTV was invited to vote on 290 taxonomic proposals approved by the ICTV Executive Committee at its meeting in October 2020, as well as on the proposed revision of the International Code of Virus Classification and Nomenclature (ICVCN). All proposals and the revision were ratified by an absolute majority of the ICTV members. Of note, ICTV mandated a uniform rule for virus species naming, which will follow the binomial 'genus-species' format with or without Latinized species epithets. The Study Groups are requested to convert all previously established species names to the new format. ICTV has also abolished the notion of a type species, i.e., a species chosen to serve as a name-bearing type of a virus genus. The remit of ICTV has been clarified through an official definition of 'virus' and several other types of mobile genetic elements. The ICVCN and ICTV Statutes have been amended to reflect these changes.


Asunto(s)
Clasificación/métodos , Filogenia , Virus no Clasificados/clasificación , Virus/clasificación , Cooperación Internacional , Viroides/clasificación , Virus/genética , Virus/aislamiento & purificación , Virus no Clasificados/genética , Virus no Clasificados/aislamiento & purificación
6.
Vet Res ; 51(1): 58, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32349781

RESUMEN

Bovine ephemeral fever is a vector-borne disease of ruminants that occurs in tropical and sub-tropical regions of Africa, Asia and Australia. The disease is caused by a rhabdovirus, bovine ephemeral fever virus (BEFV), which occurs as a single serotype globally. Although several other closely related ephemeroviruses have been isolated from cattle and/or arthropods, only kotonkan virus from Nigeria and (tentatively) Mavingoni virus from Mayotte Island in the Indian Ocean have been previously associated with febrile disease. Here, we report the isolation of a novel virus (Hayes Yard virus; HYV) from blood collected in February 2000 from a bull (Bos indicus) in the Northern Territory of Australia. The animal was suffering from a severe ephemeral fever-like illness with neurological involvement, including recumbency and paralysis, and was euthanised. Histological examination of spinal cord and lung tissue identified extensive haemorrhage in the dura mata with moderate perineuronal oedema and extensive emphysema. HYV displayed cone-shaped morphology, typical of rhabdoviruses, and was found to be most closely related antigenically to Puchong virus (PUCV), isolated in 1965 from mosquitoes in Malaysia. Analysis of complete genome sequences of HYV (15 025 nt) and PUCV (14 932 nt) indicated that each has a complex organisation (3' N-P-M-G-GNS-α1-α2-ß-γ-L 5') and expression strategy, similar to that of BEFV. Based on an alignment of complete L protein sequences, HYV and PUCV cluster with other rhabdoviruses in the genus Ephemerovirus and appear to represent two new species. Neutralising antibody to HYV was also detected in a retrospective survey of cattle sera collected in the Northern Territory.


Asunto(s)
Enfermedades de los Bovinos/virología , Ephemerovirus/aislamiento & purificación , Infecciones por Rhabdoviridae/veterinaria , Animales , Bovinos , Fiebre Efímera/virología , Masculino , Northern Territory , Infecciones por Rhabdoviridae/virología
7.
Arch Virol ; 165(11): 2737-2748, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32816125

RESUMEN

This article reports the changes to virus classification and taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2020. The entire ICTV was invited to vote on 206 taxonomic proposals approved by the ICTV Executive Committee at its meeting in July 2019, as well as on the proposed revision of the ICTV Statutes. All proposals and the revision of the Statutes were approved by an absolute majority of the ICTV voting membership. Of note, ICTV has approved a proposal that extends the previously established realm Riboviria to encompass nearly all RNA viruses and reverse-transcribing viruses, and approved three separate proposals to establish three realms for viruses with DNA genomes.


Asunto(s)
Clasificación/métodos , Virus/clasificación , Terminología como Asunto , Virología/organización & administración , Virus/aislamiento & purificación
8.
Arch Virol ; 165(5): 1263-1264, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32065315

RESUMEN

The article Binomial nomenclature for virus species: a consultation, written by Stuart G. Siddell, Peter J. Walker, Elliot J. Lefkowitz, Arcady R. Mushegian, Bas E. Dutilh.

9.
Arch Virol ; 165(2): 519-525, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31797129

RESUMEN

The Executive Committee of the International Committee on Taxonomy of Viruses (ICTV) recognizes the need for a standardized nomenclature for virus species. This article sets out the case for establishing a binomial nomenclature and presents the advantages and disadvantages of different naming formats. The Executive Committee understands that adopting a binomial system would have major practical consequences, and invites comments from the virology community before making any decisions to change the existing nomenclature. The Executive Committee will take account of these comments in deciding whether to approve a standardized binomial system at its next meeting in October 2020. Note that this system would relate only to the formal names of virus species and not to the names of viruses.


Asunto(s)
Clasificación/métodos , Terminología como Asunto , Virus/clasificación
10.
Arch Virol ; 164(3): 943-946, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30663020

RESUMEN

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in October 2018. Of note, the ICTV has approved, by an absolute majority, the creation of additional taxonomical ranks above those recognized previously. A total of 15 ranks (realm, subrealm, kingdom, subkingdom, phylum, subphylum, class, subclass, order, suborder, family, subfamily, genus, subgenus, and species) are now available to encompass the entire spectrum of virus diversity. Classification at ranks above genus is not obligatory but can be used by the authors of new taxonomic proposals when scientific justification is provided.


Asunto(s)
Virus/clasificación , Filogenia , Virología/organización & administración , Virus/genética , Virus/aislamiento & purificación
11.
Arch Virol ; 164(9): 2417-2429, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31187277

RESUMEN

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in February 2019. Of note, in addition to seven new virus families, the ICTV has approved, by an absolute majority, the creation of the realm Riboviria, a likely monophyletic group encompassing all viruses with positive-strand, negative-strand and double-strand genomic RNA that use cognate RNA-directed RNA polymerases for replication.


Asunto(s)
Virología/organización & administración , Virus/clasificación , Miembro de Comité , ARN Viral/genética , Terminología como Asunto , Virología/normas , Virus/genética , Virus/aislamiento & purificación
12.
Virus Genes ; 55(1): 87-94, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30511209

RESUMEN

Viruses in the family Rhabdoviridae are ecologically very diverse, infecting mammals, birds, reptiles, fish, plants and a wide range of other terrestrial and aquatic invertebrates. The genus Sripuvirus currently comprises five viruses that appear to circulate in transmission cycles involving reptiles and sandflies. Here, we report an analysis of the complete coding sequences of Cuiaba virus (CUIV), isolated from an amphibian (Bufo marinus) collected in Brazil, and Charleville virus (CHVV), isolated from sandflies (Phlebotomus sp.) and lizards (Gehyra australis), collected in Australia. CUIV and CHVV cluster phylogenetically with the sripuviruses in maximum likelihood trees generated from complete L protein (RdRp) sequences. They also share with sripuviruses unique features in genome organisation, including an additional gene (U1) between the matrix protein (M) gene and glycoprotein (G) gene, and an alternative long open reading frame near the start of the G ORF that encodes a predicted transmembrane protein. In view of their phylogenetic relationships, similar genome organisations and similar ecological characteristics, we propose the assignment of CUIV and CHVV as novel members of the genus Sripuvirus.


Asunto(s)
Anfibios/virología , Enfermedades de los Animales/virología , Infecciones por Arbovirus/veterinaria , Arbovirus/genética , Genoma Viral , Reptiles/virología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Evolución Molecular , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , ARN Viral
13.
J Gen Virol ; 99(4): 447-448, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29465028

RESUMEN

The family Rhabdoviridae comprises viruses with negative-sense (-) single-stranded RNA genomes of 10.8-16.1 kb. Virions are typically enveloped with bullet-shaped or bacilliform morphology but can also be non-enveloped filaments. Rhabdoviruses infect plants and animals including mammals, birds, reptiles and fish, as well as arthropods which serve as single hosts or act as biological vectors for transmission to animals or plants. Rhabdoviruses include important pathogens of humans, livestock, fish and agricultural crops. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of Rhabdoviridae, which is available at www.ictv.global/report/rhabdoviridae.


Asunto(s)
Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/virología , Rhabdoviridae/clasificación , Animales , Genoma Viral , Humanos , Filogenia , Enfermedades de las Plantas/virología , Plantas/virología , Rhabdoviridae/genética , Rhabdoviridae/aislamiento & purificación
14.
Emerg Infect Dis ; 23(8): 1409-1410, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28726605

RESUMEN

The bacterial pathogen Elizabethkingia is known to exist in certain species of mosquito but was unknown in other arthropods. We report the detection and identification of Elizabethkingia in species of Culicoides biting midge in Australia, raising the possibility of bacterial transmission via this species.


Asunto(s)
Ceratopogonidae/microbiología , Flavobacteriaceae/aislamiento & purificación , Insectos Vectores/microbiología , Animales , Australia , Flavobacteriaceae/clasificación , Flavobacteriaceae/genética , ARN Ribosómico 16S
15.
PLoS Pathog ; 11(9): e1005143, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26325027

RESUMEN

Although mosquitoes serve as vectors of many pathogens of public health importance, their response to viral infection is poorly understood. It also remains to be investigated whether viruses deploy some mechanism to be able to overcome this immune response. Here, we have used an RNA-Seq approach to identify differentially regulated genes in Culex quinquefasciatus cells following West Nile virus (WNV) infection, identifying 265 transcripts from various cellular pathways that were either upregulated or downregulated. Ubiquitin-proteasomal pathway genes, comprising 12% of total differentially regulated genes, were selected for further validation by real time RT-qPCR and functional analysis. It was found that treatment of infected cells with proteasomal inhibitor, MG-132, decreased WNV titers, indicating importance of this pathway during infection process. In infection models, the Culex ortholog of mammalian Cul4A/B (cullin RING ubiquitin ligase) was found to be upregulated in vitro as well as in vivo, especially in midguts of mosquitoes. Gene knockdown using dsRNA and overexpression studies indicated that Culex Cul4 acts as a pro-viral protein by degradation of CxSTAT via ubiquitin-proteasomal pathway. We also show that gene knockdown of Culex Cul4 leads to activation of the Jak-STAT pathway in mosquitoes leading to decrease viral replication in the body as well as saliva. Our results suggest a novel mechanism adopted by WNV to overcome mosquito immune response and increase viral replication.


Asunto(s)
Culex/virología , Proteínas Cullin/metabolismo , Inducción Enzimática , Evasión Inmune , Proteínas de Insectos/metabolismo , Replicación Viral , Virus del Nilo Occidental/fisiología , Aedes/inmunología , Aedes/metabolismo , Aedes/virología , Animales , Línea Celular , Culex/inmunología , Culex/metabolismo , Proteínas Cullin/antagonistas & inhibidores , Proteínas Cullin/genética , Virus del Dengue/inmunología , Virus del Dengue/fisiología , Femenino , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/virología , Técnicas de Silenciamiento del Gen , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Quinasas Janus/antagonistas & inhibidores , Quinasas Janus/genética , Quinasas Janus/metabolismo , ARN/antagonistas & inhibidores , ARN/metabolismo , Interferencia de ARN , ARN Viral/antagonistas & inhibidores , ARN Viral/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Factores de Transcripción STAT/antagonistas & inhibidores , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Transcriptoma , Virus del Nilo Occidental/inmunología , Virus del Nilo Occidental/aislamiento & purificación
16.
PLoS Pathog ; 11(2): e1004664, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25679389

RESUMEN

RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3' to 5' direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae.


Asunto(s)
Evolución Molecular , Genoma Viral/fisiología , Sistemas de Lectura Abierta/fisiología , ARN Viral/genética , Rhabdoviridae/genética , Secuencia de Bases , Datos de Secuencia Molecular
17.
Vet Res ; 48(1): 82, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29169390

RESUMEN

The distribution of bluetongue viruses (BTV) in Australia is represented by two distinct and interconnected epidemiological systems (episystems)-one distributed primarily in the north and one in the east. The northern episystem is characterised by substantially greater antigenic diversity than the eastern episystem; yet the forces that act to limit the diversity present in the east remain unclear. Previous work has indicated that the northern episystem is linked to that of island South East Asia and Melanesia, and that BTV present in Indonesia, Papua New Guinea and East Timor, may act as source populations for new serotypes and genotypes of BTV to enter Australia's north. In this study, the genomes of 49 bluetongue viruses from the eastern episystem and 13 from Indonesia were sequenced and analysed along with 27 previously published genome sequences from the northern Australian episystem. The results of this analysis confirm that the Australian BTV population has its origins in the South East Asian/Melanesian episystem, and that incursions into northern Australia occur with some regularity. In addition, the presence of limited genetic diversity in the eastern episystem relative to that found in the north supports the presence of substantial, but not complete, barriers to gene flow between the northern and eastern Australian episystems. Genetic bottlenecks between each successive episystem are evident, and appear to be responsible for the reduction in BTV genetic diversity observed in the north to south-east direction.


Asunto(s)
Virus de la Lengua Azul/genética , Variación Genética , Genoma Viral , Australia , Genómica , Indonesia , Filogenia , Análisis de Secuencia de ADN , Proteínas no Estructurales Virales/genética , Proteínas Virales/genética
18.
BMC Genomics ; 17(1): 769, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27716062

RESUMEN

BACKGROUND: The advent of genotyping by Next Generation Sequencing has enabled rapid discovery of thousands of single nucleotide polymorphism (SNP) markers and high throughput genotyping of large populations at an affordable cost. Genotyping by sequencing (GBS), a reduced representation library sequencing method, allows highly multiplexed sequencing of genomic subsets. This method has limitations for small organisms with low amounts of genomic DNA, such as the bluetongue virus (BTV) vectors, Culicoides midges. RESULTS: This study employed the GBS method to isolate SNP markers de novo from whole genome amplified Culicoides brevitarsis genomic DNA. The individuals were collected from regions representing two different Australian patterns of BTV strain distribution: the Northern Territory (NT) and the east coast. We isolated 8145 SNPs using GBS. Phylogenetic analysis conducted using the filtered 3263 SNPs revealed the presence of a distinct C. brevitarsis sub-population in the NT and this was confirmed by analysis of mitochondrial DNA. Two loci showed a very strong signal for selection and were unique to the NT population. Bayesian analysis with STRUCTURE indicated a possible two-population cluster. CONCLUSIONS: The results suggest that genotyping vectors with high density markers in combination with biological and environmental data is useful. However, more extensive sampling over a wider spatial and temporal range is needed. The presence of sub-structure in populations and loci under natural selection indicates the need for further investigation of the role of vectors in shaping the two Australian systems of BTV transmission. The described workflow is transferable to genotyping of small, non-model organisms, including arthropod vectors of pathogens of economic and medical importance.


Asunto(s)
Ceratopogonidae/genética , Genética de Población , Genoma de los Insectos , Genómica , Genotipo , Animales , Teorema de Bayes , Complejo IV de Transporte de Electrones/genética , Biblioteca de Genes , Genes Mitocondriales , Genómica/métodos , Haplotipos , Northern Territory , Filogenia , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Selección Genética
19.
J Virol ; 89(2): 1377-88, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25392228

RESUMEN

UNLABELLED: Wongabel virus (WONV) is an arthropod-borne rhabdovirus that infects birds. It is one of the growing array of rhabdoviruses with complex genomes that encode multiple accessory proteins of unknown function. In addition to the five canonical rhabdovirus structural protein genes (N, P, M, G, and L), the 13.2-kb negative-sense single-stranded RNA (ssRNA) WONV genome contains five uncharacterized accessory genes, one overlapping the N gene (Nx or U4), three located between the P and M genes (U1 to U3), and a fifth one overlapping the G gene (Gx or U5). Here we show that WONV U3 is expressed during infection in insect and mammalian cells and is required for efficient viral replication. A yeast two-hybrid screen against a mosquito cell cDNA library identified that WONV U3 interacts with the 83-amino-acid (aa) C-terminal domain of SNF5, a component of the SWI/SNF chromatin remodeling complex. The interaction was confirmed by affinity chromatography, and nuclear colocalization was established by confocal microscopy. Gene expression studies showed that SNF5 transcripts are upregulated during infection of mosquito cells with WONV, as well as West Nile virus (Flaviviridae) and bovine ephemeral fever virus (Rhabdoviridae), and that SNF5 knockdown results in increased WONV replication. WONV U3 also inhibits SNF5-regulated expression of the cytokine gene CSF1. The data suggest that WONV U3 targets the SWI/SNF complex to block the host response to infection. IMPORTANCE: The rhabdoviruses comprise a large family of RNA viruses infecting plants, vertebrates, and invertebrates. In addition to the major structural proteins (N, P, M, G, and L), many rhabdoviruses encode a diverse array of accessory proteins of largely unknown function. Understanding the role of these proteins may reveal much about host-pathogen interactions in infected cells. Here we examine accessory protein U3 of Wongabel virus, an arthropod-borne rhabdovirus that infects birds. We show that U3 enters the nucleus and interacts with SNF5, a component of the chromatin remodeling complex that is upregulated in response to infection and restricts viral replication. We also show that U3 inhibits SNF5-regulated expression of the cytokine colony-stimulating factor 1 (CSF1), suggesting that it targets the chromatin remodeling complex to block the host response to infection. This study appears to provide the first evidence of a virus targeting SNF5 to inhibit host gene expression.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Interacciones Huésped-Patógeno , Rhabdoviridae/inmunología , Rhabdoviridae/fisiología , Factores de Transcripción/metabolismo , Proteínas Virales/metabolismo , Animales , Línea Celular , Núcleo Celular/química , Cromatografía de Afinidad , Insectos , Mamíferos , Microscopía Confocal , Técnicas del Sistema de Dos Híbridos
20.
J Virol ; 88(24): 13981-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25253345

RESUMEN

UNLABELLED: Bluetongue virus serotype 1 (BTV 1) was first isolated in Australia from cattle blood collected in 1979 at Beatrice Hill Farm (BHF), Northern Territory (NT). From long-term surveillance programs (1977 to 2011), 2,487 isolations of 10 BTV serotypes were made. The most frequently isolated serotype was BTV 1 (41%, 1,019) followed by BTV 16 (17.5%, 436) and BTV 20 (14%, 348). In 3 years, no BTVs were isolated, and in 12 years, no BTV 1 was isolated. Seventeen BTV 1 isolates were sequenced and analyzed in comparison with 10 Australian prototype serotypes. BTV 1 showed an episodic pattern of evolutionary change characterized by four distinct periods. Each period consisted primarily of slow genetic drift which was punctuated from time to time by genetic shifts generated by segment reassortment and the introduction of new genome segments. Evidence was found for coevolution of BTV genome segments. Evolutionary dynamics and selection pressure estimates showed strong temporal and clock-like molecular evolutionary dynamics of six Australian BTV genome segments. Bayesian coalescent estimates of mean substitution rates clustered in the range of 3.5 × 10(-4) to 5.3 × 10(-4) substitutions per site per year. All BTV genome segments evolved under strong purifying (negative) selection, with only three sites identified as under pervasive diversifying (positive) selection. The obligate replication in alternate hosts (insect vector and vertebrate hosts) imposed strong evolutionary constraints. The dominant mechanism generating genetic diversity of BTV 1 at BHF was through the introduction of new viruses and reassortment of genome segments with existing viruses. IMPORTANCE: Bluetongue virus (BTV) is the causative agent of bluetongue disease in ruminants. It is a disease of concern globally and is transmitted by biting midges (Culicoides species). Analysis of the evolutionary and selection pressures on BTV 1 at a single surveillance site in northern Australia showed strong temporal and clock-like dynamics. Obligate replication in alternate hosts of insect and vertebrate imposed strong evolutionary constraints, with all BTV genome segments evolving under strong purifying (negative) selection. Generation of genetic diversity of BTV 1 in northern Australia is through genome segment reassortment and the introduction of new serotypes.


Asunto(s)
Virus de la Lengua Azul/clasificación , Virus de la Lengua Azul/genética , Lengua Azul/epidemiología , Lengua Azul/virología , Variación Genética , Animales , Australia/epidemiología , Virus de la Lengua Azul/inmunología , Virus de la Lengua Azul/aislamiento & purificación , Bovinos , Análisis por Conglomerados , Evolución Molecular , Flujo Genético , Genotipo , Epidemiología Molecular , Datos de Secuencia Molecular , Filogenia , ARN Viral/genética , Virus Reordenados/clasificación , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación , Recombinación Genética , Selección Genética , Análisis de Secuencia de ADN , Serogrupo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA