Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
PLoS Biol ; 21(7): e3002112, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37467291

RESUMEN

Viruses have evolved the ability to bind and enter cells through interactions with a wide variety of cell macromolecules. We engineered peptide-modified adeno-associated virus (AAV) capsids that transduce the brain through the introduction of de novo interactions with 2 proteins expressed on the mouse blood-brain barrier (BBB), LY6A or LY6C1. The in vivo tropisms of these capsids are predictable as they are dependent on the cell- and strain-specific expression of their target protein. This approach generated hundreds of capsids with dramatically enhanced central nervous system (CNS) tropisms within a single round of screening in vitro and secondary validation in vivo thereby reducing the use of animals in comparison to conventional multi-round in vivo selections. The reproducible and quantitative data derived via this method enabled both saturation mutagenesis and machine learning (ML)-guided exploration of the capsid sequence space. Notably, during our validation process, we determined that nearly all published AAV capsids that were selected for their ability to cross the BBB in mice leverage either the LY6A or LY6C1 protein, which are not present in primates. This work demonstrates that AAV capsids can be directly targeted to specific proteins to generate potent gene delivery vectors with known mechanisms of action and predictable tropisms.


Asunto(s)
Barrera Hematoencefálica , Cápside , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Cápside/metabolismo , Vectores Genéticos , Sistema Nervioso Central/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Dependovirus/genética , Dependovirus/metabolismo
2.
Mol Ther ; 30(1): 238-243, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34695545

RESUMEN

Genome editing in the lung has the potential to provide long-term expression of therapeutic protein to treat lung genetic diseases. Yet efficient delivery of CRISPR to the lung remains a challenge. The NIH Somatic Cell Genome Editing (SCGE) Consortium is developing safe and effective methods for genome editing in disease tissues. Methods developed by consortium members are independently validated by the SCGE small animal testing center to establish rigor and reproducibility. We have developed and validated a dual adeno-associated virus (AAV) CRISPR platform that supports effective editing of a lox-stop-lox-Tomato reporter in mouse lung airway. After intratracheal injection of the AAV serotype 5 (AAV5)-packaged S. pyogenes Cas9 (SpCas9) and single guide RNAs (sgRNAs), we observed ∼19%-26% Tomato-positive cells in both large and small airways, including club and ciliated epithelial cell types. This highly effective AAV delivery platform will facilitate the study of therapeutic genome editing in the lung and other tissue types.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Edición Génica/métodos , Pulmón , Ratones , ARN Guía de Kinetoplastida/genética , Reproducibilidad de los Resultados
3.
Hepatology ; 72(5): 1771-1785, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32060938

RESUMEN

BACKGROUND AND AIMS: This study examined whether enhanced susceptibility of steatotic liver to ischemia-reperfusion (I/R) injury is due to impaired recruitment of bone marrow (BM) progenitors of liver sinusoidal endothelial cells (LSECs, also called sinusoidal endothelial cell progenitor cells [sprocs]) with diminished repair of injured LSECs and whether restoring signaling to recruit BM sprocs reduces I/R injury. APPROACH AND RESULTS: Hepatic vessels were clamped for 1 hour in rats fed a high-fat, high-fructose (HFHF) diet for 5, 10, or 15 weeks. Matrix metalloproteinase 9 (MMP-9) antisense oligonucleotides (ASO) or an MMP inhibitor were used to induce liver-selective MMP-9 inhibition. HFHF rats had mild, moderate, and severe steatosis, respectively, at 5, 10, and 15 weeks. I/R injury was enhanced in HFHF rats; this was accompanied by complete absence of hepatic vascular endothelial growth factor (VEGF)-stromal cell-derived factor 1 (sdf1) signaling, leading to lack of BM sproc recruitment. Liver-selective MMP-9 inhibition to protect against proteolytic cleavage of hepatic VEGF using either MMP-9 ASO or intraportal MMP inhibitor in 5-week and 10-week HFHF rats enhanced hepatic VEGF-sdf1 signaling, increased BM sproc recruitment, and reduced alanine aminotransferase (ALT) by 92% and 77% at 5 weeks and by 80% and 64% at 10 weeks of the HFHF diet, respectively. After I/R injury in 15-week HFHF rats, the MMP inhibitor reduced active MMP-9 expression by 97%, ameliorated histologic evidence of injury, and reduced ALT by 58%, which is comparable to control rats sustaining I/R injury. Rescue therapy with intraportal MMP inhibitor, given after ischemia, in the 5-week HFHF rat reduced ALT by 71% and reduced necrosis. CONCLUSIONS: Lack of signaling to recruit BM sprocs that repair injured LSECs renders steatotic liver more susceptible to I/R injury. Liver-selective MMP-9 inhibition enhances VEGF-sdf1 signaling and recruitment of BM sprocs, which markedly protects against I/R injury, even in severely steatotic rats.


Asunto(s)
Células Progenitoras Endoteliales/efectos de los fármacos , Hígado Graso/etiología , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Daño por Reperfusión/prevención & control , Animales , Trasplante de Médula Ósea , Dieta Alta en Grasa , Azúcares de la Dieta/efectos adversos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/terapia , Células Progenitoras Endoteliales/patología , Hígado Graso/diagnóstico , Hígado Graso/tratamiento farmacológico , Fructosa/efectos adversos , Humanos , Hígado/irrigación sanguínea , Hígado/diagnóstico por imagen , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Inhibidores de la Metaloproteinasa de la Matriz/uso terapéutico , Microvasos/citología , Microvasos/efectos de los fármacos , Microvasos/patología , Ratas , Daño por Reperfusión/etiología
4.
J Biol Chem ; 294(50): 19255-19268, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31645432

RESUMEN

MAF1 homolog, negative regulator of RNA polymerase III (MAF1) is a key repressor of RNA polymerase (pol) III-dependent transcription and functions as a tumor suppressor. Its expression is frequently down-regulated in primary human hepatocellular carcinomas (HCCs). However, this reduction in MAF1 protein levels does not correlate with its transcript levels, indicating that MAF1 is regulated post-transcriptionally. Here, we demonstrate that MAF1 is a labile protein whose levels are regulated through the ubiquitin-dependent proteasome pathway. We found that MAF1 ubiquitination is enhanced upon mTOR complex 1 (TORC1)-mediated phosphorylation at Ser-75. Moreover, we observed that the E3 ubiquitin ligase cullin 2 (CUL2) critically regulates MAF1 ubiquitination and controls its stability and subsequent RNA pol III-dependent transcription. Analysis of the phenotypic consequences of modulating either CUL2 or MAF1 protein expression revealed changes in actin cytoskeleton reorganization and altered sensitivity to doxorubicin-induced apoptosis. Repression of RNA pol III-dependent transcription by chemical inhibition or knockdown of BRF1 RNA pol III transcription initiation factor subunit (BRF1) enhanced HCC cell sensitivity to doxorubicin, suggesting that MAF1 regulates doxorubicin resistance in HCC by controlling RNA pol III-dependent transcription. Together, our results identify the ubiquitin proteasome pathway and CUL2 as important regulators of MAF1 levels. They suggest that decreases in MAF1 protein underlie chemoresistance in HCC and perhaps other cancers and point to an important role for MAF1 and RNA pol III-mediated transcription in chemosensitivity and apoptosis.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Doxorrubicina/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Ubiquitina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Ratones Noqueados , Fosforilación/efectos de los fármacos , Proteínas Represoras/deficiencia , Proteínas Represoras/metabolismo
5.
Curr Opin Cardiol ; 35(3): 242-248, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32073405

RESUMEN

PURPOSE OF REVIEW: This review highlights recent progress in applying genome editing to the study and treatment of cardiovascular disease (CVD). RECENT FINDINGS: Recent work has shown that genome editing can be used to determine the pathogenicity of variants of unknown significance in patient-derived induced pluripotent stem cells. These cells can also be used to test therapeutic genome editing approaches in a personalized manner. Somatic genome editing holds great promise for the treatment of CVD, and important proof of concept experiments have already been performed in animal models. Here we briefly review recent progress in patient-derived cells, as well as the development of somatic genome-editing therapies for CVD, with a particular focus on liver and heart. SUMMARY: Translating this technology into the clinic will require precise editing enzymes, efficient delivery systems, and mitigation of off-target events and immune responses. Further development of these technologies will improve diagnostics and enable permanent correction of some of the most severe forms of CVD.


Asunto(s)
Enfermedades Cardiovasculares/terapia , Células Madre Pluripotentes Inducidas , Animales , Edición Génica , Humanos
6.
Hum Mol Genet ; 25(14): 3042-3054, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27270415

RESUMEN

We report an individual who presented with severe neurodevelopmental delay and an intractable infantile-onset seizure disorder. Exome sequencing identified a homozygous single nucleotide change that abolishes a splice donor site in the ARV1 gene (c.294 + 1G > A homozygous). This variant completely prevented splicing in minigene assays, and resulted in exon skipping and an in-frame deletion of 40 amino acids in primary human fibroblasts (NP_073623.1: p.(Lys59_Asn98del). The p.(Lys59_Asn98del) and previously reported p.(Gly189Arg) ARV1 variants were evaluated for protein expression and function. The p.(Gly189Arg) variant partially rescued the temperature-dependent growth defect in arv1Δ yeast, while p.(Lys59-Asn98del) completely failed to rescue at restrictive temperature. In contrast to wild type human ARV1, neither variant expressed detectable levels of protein in mammalian cells. Mice with a neuronal deletion of Arv1 recapitulated the human phenotype, exhibiting seizures and a severe survival defect in adulthood. Our data support ARV1 deficiency as a cause of autosomal recessive epileptic encephalopathy.


Asunto(s)
Proteínas Portadoras/genética , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Espasmos Infantiles/genética , Exones/genética , Femenino , Genotipo , Humanos , Lactante , Mutación , Linaje , Fenotipo , Sitios de Empalme de ARN/genética , Espasmos Infantiles/fisiopatología
7.
FEMS Yeast Res ; 13(5): 485-94, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23692528

RESUMEN

Control of volatile acidity (VA) is a major issue for wine quality. In this study, we investigated the production of VA by a deletion mutant of the fermentation stress response gene AAF1 in the budding yeast Saccharomyces cerevisiae. Fermentations were carried out in commercial Chardonnay grape must to mimic industrial wine-making conditions. We demonstrated that a wine yeast strain deleted for AAF1 reduced acetic acid levels in wine by up to 39.2% without increasing the acetaldehyde levels, revealing a potential for industrial application. Deletion of the cytosolic aldehyde dehydrogenase gene ALD6 also reduced acetic acid levels dramatically, but increased the acetaldehyde levels by 41.4%, which is not desired by the wine industry. By comparison, ALD4 and the AAF1 paralog RSF2 had no effects on acetic acid production in wine. Deletion of AAF1 was detrimental to the growth of ald6Δ and ald4Δald6Δ mutants, but had no effect on acetic acid production. Overexpression of AAF1 dramatically increased acetic acid levels in wine in an Ald6p-dependent manner, indicating that Aaf1p regulates acetic acid production mainly via Ald6p. Overexpression of AAF1 in an ald4Δald6Δ strain produced significantly more acetic acid in wine than the ald4Δald6Δ mutant, suggesting that Aaf1p may also regulate acetic acid synthesis independently of Ald4p and Ald6p.


Asunto(s)
Saccharomyces cerevisiae/fisiología , Vitis/microbiología , Vino/microbiología , Acetaldehído/metabolismo , Ácido Acético/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Citosol/metabolismo , Citosol/microbiología , Fermentación , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Biomed Pharmacother ; 158: 114189, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36587560

RESUMEN

Biological applications deriving from the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 site-specific nuclease system continue to impact and accelerate gene therapy strategies. Safe and effective in vivo co-delivery of the CRISPR/Cas9 system to target somatic cells is essential in the clinical therapeutic context. Both non-viral and viral vector systems have been applied for this delivery matter. Despite elegant proof-of-principle studies, available vector technologies still face challenges that restrict the application of CRISPR/Cas9-facilitated gene therapy. Of note, the mandated co-delivery of the gene-editing components must be accomplished in the potential presence of pre-formed anti-vector immunity. Additionally, methods must be sought to limit the potential of off-target editing. To this end, we have exploited the molecular promiscuities of adenovirus (Ad) to address the key requirements of CRISPR/Cas9-facilitated gene therapy. In this regard, we have endeavored capsid engineering of a simian (chimpanzee) adenovirus isolate 36 (SAd36) to achieve targeted modifications of vector tropism. The SAd36 vector with the myeloid cell-binding peptide (MBP) incorporated in the capsid has allowed selective in vivo modifications of the vascular endothelium. Importantly, vascular endothelium can serve as an effective non-hepatic cellular source of deficient serum factors relevant to several inherited genetic disorders. In addition to allowing for re-directed tropism, capsid engineering of nonhuman primate Ads provide the means to circumvent pre-formed vector immunity. Herein we have generated a SAd36. MBP vector that can serve as a single intravenously administered agent allowing effective and selective in vivo editing for endothelial target cells of the mouse spleen, brain and kidney. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author upon reasonable request.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Ratones , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Vectores Genéticos/genética , Terapia Genética/métodos , Adenoviridae/genética , Proteínas de la Cápside/genética , Endotelio
9.
bioRxiv ; 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37546995

RESUMEN

Homology Directed Repair (HDR)-based genome editing is an approach that could permanently correct a broad range of genetic diseases. However, its utility is limited by inefficient and imprecise DNA repair mechanisms in terminally differentiated tissues. Here, we tested "Repair Drive", a novel method for improving targeted gene insertion in the liver by selectively expanding correctly repaired hepatocytes in vivo. Our system consists of transient conditioning of the liver by knocking down an essential gene, and delivery of an untargetable version of the essential gene in cis with a therapeutic transgene. We show that Repair Drive dramatically increases the percentage of correctly targeted hepatocytes, up to 25%. This resulted in a five-fold increased expression of a therapeutic transgene. Repair Drive was well-tolerated and did not induce toxicity or tumorigenesis in long term follow up. This approach will broaden the range of liver diseases that can be treated with somatic genome editing.

10.
Elife ; 112022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35611941

RESUMEN

MAF1, a key repressor of RNA polymerase (pol) III-mediated transcription, has been shown to promote mesoderm formation in vitro. Here, we show that MAF1 plays a critical role in regulating osteoblast differentiation and bone mass. Global deletion of MAF1 (Maf1-/- mice) produced a high bone mass phenotype. However, osteoblasts isolated from Maf1-/- mice showed reduced osteoblastogenesis ex vivo. Therefore, we determined the phenotype of mice overexpressing MAF1 in cells from the mesenchymal lineage (Prx1-Cre;LSL-MAF1 mice). These mice showed increased bone mass. Ex vivo, cells from these mice showed enhanced osteoblastogenesis concordant with their high bone mass phenotype. Thus, the high bone mass phenotype in Maf1-/- mice is likely due to confounding effects from the global absence of MAF1. MAF1 overexpression promoted osteoblast differentiation of ST2 cells while MAF1 downregulation inhibited differentiation, indicating MAF1 enhances osteoblast formation. However, other perturbations used to repress RNA pol III transcription, inhibited osteoblast differentiation. However, decreasing RNA pol III transcription through these perturbations enhanced adipogenesis in ST2 cells. RNA-seq analyzed the basis for these opposing actions on osteoblast differentiation. The different modalities used to perturb RNA pol III transcription resulted in distinct gene expression changes, indicating that this transcription process is highly sensitive and triggers diverse gene expression programs and phenotypic outcomes. Specifically, MAF1 induced genes known to promote osteoblast differentiation. Furthermore, genes that are induced during osteoblast differentiation displayed codon bias. Together, these results reveal a novel role for MAF1 and RNA pol III-mediated transcription in osteoblast fate determination, differentiation, and bone mass regulation.


Asunto(s)
ARN Polimerasa III , Proteínas Represoras , Animales , Proteína 1 Similar al Receptor de Interleucina-1 , Ratones , Prolapso de la Válvula Mitral , Miopía , ARN , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Enfermedades de la Piel , Transcripción Genética
11.
FEMS Yeast Res ; 11(6): 499-508, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21585652

RESUMEN

Wine fermentation imposes a number of stresses on Saccharomyces cerevisiae, and wine yeasts respond to this harsh environment by altering their transcriptional profile (Marks et al., 2008). We have labeled this change in gene expression patterns the fermentation stress response (FSR). An important component of the FSR is the increased expression of 62 genes for which no function has been identified for their protein products. We hypothesize that a function for these proteins may only be revealed late in grape must fermentation, when the yeast cells are facing conditions much more extreme than those normally encountered in laboratory media. We used affinity copurification to identify interaction partners for the FSR protein Yfr017p, and found that it interacts specifically with the glycogen debranching enzyme (Gdb1p). The expression of both of these proteins is strongly induced during wine fermentation. Therefore, we investigated the role of Yfr017p in glycogen metabolism by constructing wine yeast strains that lack this protein. These YFR017C null cells displayed a significant reduction in their ability to accumulate glycogen during aerobic growth and fermentation. Moreover, Yfr017p inhibits Gdb1p activity in vitro. These results suggest that Yfr017p functions as an inhibitor of Gdb1p, enhancing the ability of yeast cells to store glucose as glycogen. Therefore, we propose IGD1 (for inhibitor of glycogen debranching) as a gene name for the YFR017C ORF.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Sistema de la Enzima Desramificadora del Glucógeno/antagonistas & inhibidores , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Aerobiosis , Fermentación , Eliminación de Gen , Glucógeno/biosíntesis , Sistema de la Enzima Desramificadora del Glucógeno/genética , Proteínas de Saccharomyces cerevisiae/genética , Vino/microbiología
13.
Cell Rep ; 24(7): 1852-1864, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110641

RESUMEN

RNA polymerase (pol) III transcribes a variety of small untranslated RNAs involved in transcription, RNA processing, and translation. RNA pol III and its components are altered in various human developmental disorders, yet their roles in cell fate determination and development are poorly understood. Here we demonstrate that Maf1, a transcriptional repressor, promotes induction of mouse embryonic stem cells (mESCs) into mesoderm. Reduced Maf1 expression in mESCs and preadipocytes impairs adipogenesis, while ectopic Maf1 expression in Maf1-deficient cells enhances differentiation. RNA pol III repression by chemical inhibition or knockdown of Brf1 promotes adipogenesis. Altered RNA pol III-dependent transcription produces select changes in mRNAs with a significant enrichment of adipogenic gene signatures. Furthermore, RNA pol III-mediated transcription positively regulates long non-coding RNA H19 and Wnt6 expression, established adipogenesis inhibitors. Together, these studies reveal an important and unexpected function for RNA pol III-mediated transcription and Maf1 in mesoderm induction and adipocyte differentiation.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/genética , ARN Polimerasa III/genética , Proteínas Represoras/genética , Transcripción Genética , Adipocitos/citología , Animales , Factor 1 de Respuesta al Butirato , Diferenciación Celular , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Masculino , Mesodermo/citología , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Ratones , Ratones Desnudos , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Cultivo Primario de Células , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Polimerasa III/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
14.
Oncotarget ; 8(30): 48832-48845, 2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28415573

RESUMEN

The TATA-binding protein (TBP) plays a central role in eukaryotic gene transcription. Given its key function in transcription initiation, TBP was initially thought to be an invariant protein. However, studies showed that TBP expression is upregulated by oncogenic signaling pathways. Furthermore, depending on the cell type, small increases in cellular TBP amounts can induce changes in cellular growth properties towards a transformed phenotype. Here we sought to identify the specific TBP-regulated gene targets that drive its ability to induce tumorigenesis. Using microarray analysis, our results reveal that increases in cellular TBP concentrations produce selective alterations in gene expression that include an enrichment for genes involved in angiogenesis. Accordingly, we find that TBP levels modulate VEGFA expression, the master regulator of angiogenesis. Increases in cellular TBP amounts induce VEGFA expression and secretion to enhance cell migration and tumor vascularization. TBP mediates changes in VEGFA transcription requiring its recruitment at a hypoxia-insensitive proximal TSS, revealing a mechanism for VEGF regulation under non-stress conditions. The results are clinically relevant as TBP expression is significantly increased in both colon adenocarcinomas as well as adenomas relative to normal tissue. Furthermore, TBP expression is positively correlated with VEGFA expression. Collectively, these studies support the idea that increases in TBP expression contribute to enhanced VEGFA transcription early in colorectal cancer development to drive tumorigenesis.


Asunto(s)
Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteína de Unión a TATA-Box/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Sitios de Unión , Movimiento Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias del Colon/patología , Expresión Génica , Perfilación de la Expresión Génica , Genes Reporteros , Humanos , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Polimerasa II/metabolismo , Proteína de Unión a TATA-Box/genética , Sitio de Iniciación de la Transcripción , Transcriptoma , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Food Chem ; 194: 26-31, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26471523

RESUMEN

Folate deficiency is linked to many diseases, some of which may have higher probability in individuals with alcohol-induced alterations in one-carbon metabolism. Our study shows that folate content in commercial wine is not related to white or red varieties, but associated with the yeast that is used to produce the wine. The stability of folate in these wines, once opened for consumption, did not correlate with total phenolic or sulfite content. In addition, we employed yeast bioengineering to fortify wine with folate. We confirmed by overexpression that FOL2 was the key gene encoding the rate-limiting step of folate biosynthesis in wine yeast. In this study, we also show that overexpression of other folate biosynthesis genes, including ABZ1, ABZ2, DFR1, FOL1 and FOL3, had no effect on folate levels in wine. Ensuring stability of the increased natural folate in all wines was achieved by the addition of ascorbate.


Asunto(s)
Bioingeniería/métodos , Ácido Fólico/química , Vino/análisis , Humanos
16.
PLoS One ; 8(10): e77192, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24130853

RESUMEN

Analyzing time-course expression data captured in microarray datasets is a complex undertaking as the vast and complex data space is represented by a relatively low number of samples as compared to thousands of available genes. Here, we developed the Interdependent Correlation Clustering (ICC) method to analyze relationships that exist among genes conditioned on the expression of a specific target gene in microarray data. Based on Correlation Clustering, the ICC method analyzes a large set of correlation values related to gene expression profiles extracted from given microarray datasets. ICC can be applied to any microarray dataset and any target gene. We applied this method to microarray data generated from wine fermentations and selected NSF1, which encodes a C2H2 zinc finger-type transcription factor, as the target gene. The validity of the method was verified by accurate identifications of the previously known functional roles of NSF1. In addition, we identified and verified potential new functions for this gene; specifically, NSF1 is a negative regulator for the expression of sulfur metabolism genes, the nuclear localization of Nsf1 protein (Nsf1p) is controlled in a sulfur-dependent manner, and the transcription of NSF1 is regulated by Met4p, an important transcriptional activator of sulfur metabolism genes. The inter-disciplinary approach adopted here highlighted the accuracy and relevancy of the ICC method in mining for novel gene functions using complex microarray datasets with a limited number of samples.


Asunto(s)
Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vino/microbiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Fermentación , Regulación Fúngica de la Expresión Génica , Espacio Intracelular/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Azufre/metabolismo , Transcripción Genética
17.
PLoS One ; 7(12): e51551, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23240040

RESUMEN

The production of acetic acid during wine fermentation is a critical issue for wineries since the sensory quality of a wine can be affected by the amount of acetic acid it contains. We found that the C2H2-type zinc-finger transcription factor YML081Wp regulated the mRNA levels of ALD4 and ALD6, which encode a cytosolic acetaldehyde dehydrogenase (ACDH) and a mitochondrial ACDH, respectively. These enzymes produce acetate from acetaldehyde as part of the pyruvate dehydrogenase bypass. This regulation was also reflected in the protein levels of Ald4p and Ald6p, as well as total ACDH activity. In the absence of ALD6, YML081W had no effect on acetic acid levels, suggesting that this transcription factor's effects are mediated primarily through this gene. lacZ reporter assays revealed that Yml081wp stimulates ALD6 transcription, in large part from a GAGGGG element 590 base pairs upstream of the translation start site. The non-annotated ORF YML081W therefore encodes a transcription factor that regulates acetate production in Saccharomyces cerevisiae. We propose AAF1 as a gene name for the YML081W ORF.


Asunto(s)
Acetatos/metabolismo , Fermentación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Estrés Fisiológico , Factores de Transcripción/metabolismo , Acetaldehído/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Citosol/metabolismo , Glicerol , Mitocondrias/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Vino
18.
J Biol Chem ; 283(36): 24290-4, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18622018

RESUMEN

The nuclear hormone receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) is the central regulator of adipogenesis. Although it is the target for several drugs that function as agonist activators, a high affinity endogenous ligand for this receptor that is involved in regulating adipogenesis has yet to be identified. Here, we investigated the requirement for ligand activation of PPARgamma in fat cell differentiation, taking advantage of a natural mutant of this receptor that does not bind or become activated by any known natural or synthetic ligand. When ectopically expressed in PPARgamma-null fibroblasts, this Q286P allele was able to strongly promote morphological adipogenesis, without any significant difference compared with wild-type PPARgamma. In addition, no significant differences were found in the expression of several adipogenic genes between the wild-type and Q286P mutant alleles. To extend our studies to an in vivo setting, we performed subcutaneous injections of PPARgamma-expressing fibroblasts into nude mice. We found that both wild-type and Q286P mutant-expressing fibroblasts were able to generate fat pads in the mice. These results suggest that the binding and activation of PPARgamma by agonist ligands may not be required for adipogenesis under physiological conditions.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/fisiología , Fibroblastos/metabolismo , PPAR gamma/metabolismo , Alelos , Sustitución de Aminoácidos , Animales , Diferenciación Celular/fisiología , Línea Celular , Expresión Génica , Ligandos , Ratones , Ratones Desnudos , Mutación Missense , PPAR gamma/agonistas , PPAR gamma/genética , Estructura Terciaria de Proteína/fisiología
19.
Nature ; 423(6939): 550-5, 2003 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-12754525

RESUMEN

Hepatic gluconeogenesis is absolutely required for survival during prolonged fasting or starvation, but is inappropriately activated in diabetes mellitus. Glucocorticoids and glucagon have strong gluconeogenic actions on the liver. In contrast, insulin suppresses hepatic gluconeogenesis. Two components known to have important physiological roles in this process are the forkhead transcription factor FOXO1 (also known as FKHR) and peroxisome proliferative activated receptor-gamma co-activator 1 (PGC-1alpha; also known as PPARGC1), a transcriptional co-activator; whether and how these factors collaborate has not been clear. Using wild-type and mutant alleles of FOXO1, here we show that PGC-1alpha binds and co-activates FOXO1 in a manner inhibited by Akt-mediated phosphorylation. Furthermore, FOXO1 function is required for the robust activation of gluconeogenic gene expression in hepatic cells and in mouse liver by PGC-1alpha. Insulin suppresses gluconeogenesis stimulated by PGC-1alpha but co-expression of a mutant allele of FOXO1 insensitive to insulin completely reverses this suppression in hepatocytes or transgenic mice. We conclude that FOXO1 and PGC-1alpha interact in the execution of a programme of powerful, insulin-regulated gluconeogenesis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Gluconeogénesis/efectos de los fármacos , Insulina/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead , Regulación de la Expresión Génica/efectos de los fármacos , Gluconeogénesis/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/citología , Ratones , Pruebas de Precipitina , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA