Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Pain ; 164(12): 2737-2748, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37751539

RESUMEN

ABSTRACT: Fibromyalgia has been characterized by augmented cross-network functional communication between the brain's sensorimotor, default mode, and attentional (salience/ventral and dorsal) networks. However, the underlying mechanisms of these aberrant communication patterns are unknown. In this study, we sought to understand large-scale topographic patterns at instantaneous timepoints, known as co-activation patterns (CAPs). We found that a sustained pressure pain challenge temporally modulated the occurrence of CAPs. Using proton magnetic resonance spectroscopy, we found that greater basal excitatory over inhibitory neurotransmitter levels within the anterior insula orchestrated higher cross-network connectivity between the anterior insula and the default mode network through lower occurrence of a CAP encompassing the attentional networks during sustained pain. Moreover, we found that hyperalgesia in fibromyalgia was mediated through increased occurrence of a CAP encompassing the sensorimotor network during sustained pain. In conclusion, this study elucidates the role of momentary large-scale topographic brain patterns in shaping noxious information in patients with fibromyalgia, while laying the groundwork for using precise spatiotemporal dynamics of the brain for the potential development of therapeutics.


Asunto(s)
Fibromialgia , Neuroquímica , Humanos , Fibromialgia/diagnóstico por imagen , Hiperalgesia/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Dolor , Mapeo Encefálico , Red Nerviosa/diagnóstico por imagen
2.
Brain Struct Funct ; 227(5): 1773-1787, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35220486

RESUMEN

Cerebellar-cortical loops comprise critical neural circuitry that supports self-initiated movements and motor adjustments in response to perceived errors, functions that are affected in stuttering. It is unknown whether structural aspects of cerebellar circuitry are affected in stuttering, particularly in children close to symptom onset. Here we examined white matter diffusivity characteristics of the three cerebellar peduncles (CPs) based on diffusion MRI (dMRI) data collected from 41 children who stutter (CWS) and 42 controls in the 3-11 years range. We hypothesized that CWS would exhibit decreased fractional anisotropy (FA) in the right CPs given the contralateral connectivity of the cerebellar-cortical loops and past reports of structural differences in left cortical areas in stuttering speakers. Automatic Fiber Quantification (AFQ) was used to track and segment cerebellar white matter pathways and to extract diffusivity measures. We found significant group differences for FA in the right inferior CP (ICP) only: controls showed significantly higher FA in the right ventral ICP compared to CWS, controlling for age, sex, and verbal IQ. Furthermore, FA of right ICP was negatively correlated with stuttering frequency in CWS. These results suggest an early developmental difference in the right ICP for CWS compared to age-matched peers, which may indicate an alteration in error processing, a function previously linked to the ICP. Lower FA here may impact error monitoring and sensory input processing to guide motor corrections. Further longitudinal investigations in children may provide additional insights into how CP development links to stuttering persistence and recovery.


Asunto(s)
Tartamudeo , Sustancia Blanca , Anisotropía , Cerebelo/diagnóstico por imagen , Niño , Imagen de Difusión por Resonancia Magnética , Humanos
3.
Front Hum Neurosci ; 15: 587018, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613207

RESUMEN

Over 100 million Americans suffer from chronic pain (CP), which causes more disability than any other medical condition in the United States at a cost of $560-$635 billion per year (Institute of Medicine, 2011). Opioid analgesics are frequently used to treat CP. However, long term use of opioids can cause brain changes such as opioid-induced hyperalgesia that, over time, increase pain sensation. Also, opioids fail to treat complex psychological factors that worsen pain-related disability, including beliefs about and emotional responses to pain. Cognitive behavioral therapy (CBT) can be efficacious for CP. However, CBT generally does not focus on important factors needed for long-term functional improvement, including attainment of personal goals and the psychological flexibility to choose responses to pain. Acceptance and Commitment Therapy (ACT) has been recognized as an effective, non-pharmacologic treatment for a variety of CP conditions (Gutierrez et al., 2004). However, little is known about the neurologic mechanisms underlying ACT. We conducted an ACT intervention in women (n = 9) with chronic musculoskeletal pain. Functional magnetic resonance imaging (fMRI) data were collected pre- and post-ACT, and changes in functional connectivity (FC) were measured using Network-Based Statistics (NBS). Behavioral outcomes were measured using validated assessments such as the Acceptance and Action Questionnaire (AAQ-II), the Chronic Pain Acceptance Questionnaire (CPAQ), the Center for Epidemiologic Studies Depression Scale (CES-D), and the NIH Toolbox Neuro-QoLTM (Quality of Life in Neurological Disorders) scales. Results suggest that, following the 4-week ACT intervention, participants exhibited reductions in brain activation within and between key networks including self-reflection (default mode, DMN), emotion (salience, SN), and cognitive control (frontal parietal, FPN). These changes in connectivity strength were correlated with changes in behavioral outcomes including decreased depression and pain interference, and increased participation in social roles. This study is one of the first to demonstrate that improved function across the DMN, SN, and FPN may drive the positive outcomes associated with ACT. This study contributes to the emerging evidence supporting the use of neurophysiological indices to characterize treatment effects of alternative and complementary mind-body therapies.

4.
Brain Sci ; 11(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374858

RESUMEN

Chronic musculoskeletal pain is a costly and prevalent condition that affects the lives of over 50 million individuals in the United States. Chronic pain leads to functional brain changes in those suffering from the condition. Not only does the primary pain network transform as the condition changes from acute to persistent pain, a state of hyper-connectivity also exists between the default mode, frontoparietal, and salience networks. Graph theory analysis has recently been used to investigate treatment-driven brain network changes. For example, current research suggests that Acceptance and Commitment Therapy (ACT) may reduce the chronic pain associated hyper-connectivity between the default mode, frontoparietal, and salience networks, as well as within the salience network. This study extended previous work by examining the associations between the three networks above and a meta-analytically derived pain network. Results indicate decreased connectivity within the pain network (including left putamen, right insula, left insula, and right thalamus) in addition to triple network connectivity changes after the four-week Acceptance and Commitment Therapy intervention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA