Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Genet Couns ; 32(2): 266-280, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36281494

RESUMEN

Epilepsy, defined by the occurrence of two or more unprovoked seizures or one unprovoked seizure with a propensity for others, affects 0.64% of the population and can lead to significant morbidity and mortality. A majority of unexplained epilepsy (seizures not attributed to an acquired etiology, such as trauma or infection) is estimated to have an underlying genetic etiology. Despite rapid progress in understanding of the genetic underpinnings of the epilepsies, there are no recent evidence-based guidelines for genetic testing and counseling for this population. This practice guideline provides evidence-based recommendations for approaching genetic testing in the epilepsies using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) Evidence to Decision framework. We used evidence from a recent systematic evidence review and meta-analysis of diagnostic yield of genetic tests in patients with epilepsy. We also compiled data from other sources, including recently submitted conference abstracts and peer-reviewed journal articles. We identified and prioritized outcomes of genetic testing as critical, important or not important and based our recommendations on outcomes deemed critical and important. We considered the desirable and undesirable effects, value and acceptability to relevant stakeholders, impact on health equity, cost-effectiveness, certainty of evidence, and feasibility of the interventions in individuals with epilepsy. Taken together, we generated two clinical recommendations: (1) Genetic testing is strongly recommended for all individuals with unexplained epilepsy, without limitation of age, with exome/genome sequencing and/or a multi-gene panel (>25 genes) as first-tier testing followed by chromosomal microarray, with exome/genome sequencing conditionally recommended over multi-gene panel. (2) It is strongly recommended that genetic tests be selected, ordered, and interpreted by a qualified healthcare provider in the setting of appropriate pre-test and post-test genetic counseling. Incorporation of genetic counselors into neurology practices and/or referral to genetics specialists are both useful models for supporting providers without genetics expertise to implement these recommendations.


Asunto(s)
Consejeros , Epilepsia , Humanos , Pruebas Genéticas , Epilepsia/diagnóstico , Epilepsia/genética , Asesoramiento Genético , Práctica Clínica Basada en la Evidencia , Convulsiones , Consejo
2.
BMC Med Inform Decis Mak ; 22(1): 23, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35090449

RESUMEN

INTRODUCTION: Currently, one of the commonly used methods for disseminating electronic health record (EHR)-based phenotype algorithms is providing a narrative description of the algorithm logic, often accompanied by flowcharts. A challenge with this mode of dissemination is the potential for under-specification in the algorithm definition, which leads to ambiguity and vagueness. METHODS: This study examines incidents of under-specification that occurred during the implementation of 34 narrative phenotyping algorithms in the electronic Medical Record and Genomics (eMERGE) network. We reviewed the online communication history between algorithm developers and implementers within the Phenotype Knowledge Base (PheKB) platform, where questions could be raised and answered regarding the intended implementation of a phenotype algorithm. RESULTS: We developed a taxonomy of under-specification categories via an iterative review process between two groups of annotators. Under-specifications that lead to ambiguity and vagueness were consistently found across narrative phenotype algorithms developed by all involved eMERGE sites. DISCUSSION AND CONCLUSION: Our findings highlight that under-specification is an impediment to the accuracy and efficiency of the implementation of current narrative phenotyping algorithms, and we propose approaches for mitigating these issues and improved methods for disseminating EHR phenotyping algorithms.


Asunto(s)
Algoritmos , Registros Electrónicos de Salud , Genómica , Humanos , Bases del Conocimiento , Fenotipo
3.
World J Surg ; 44(1): 84-94, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31605180

RESUMEN

BACKGROUND: The extent to which obesity and genetics determine postoperative complications is incompletely understood. METHODS: We performed a retrospective study using two population cohorts with electronic health record (EHR) data. The first included 736,726 adults with body mass index (BMI) recorded between 1990 and 2017 at Vanderbilt University Medical Center. The second cohort consisted of 65,174 individuals from 12 institutions contributing EHR and genome-wide genotyping data to the Electronic Medical Records and Genomics (eMERGE) Network. Pairwise logistic regression analyses were used to measure the association of BMI categories with postoperative complications derived from International Classification of Disease-9 codes, including postoperative infection, incisional hernia, and intestinal obstruction. A genetic risk score was constructed from 97 obesity-risk single-nucleotide polymorphisms for a Mendelian randomization study to determine the association of genetic risk of obesity on postoperative complications. Logistic regression analyses were adjusted for sex, age, site, and race/principal components. RESULTS: Individuals with overweight or obese BMI (≥25 kg/m2) had increased risk of incisional hernia (odds ratio [OR] 1.7-5.5, p < 3.1 × 10-20), and people with obesity (BMI ≥ 30 kg/m2) had increased risk of postoperative infection (OR 1.2-2.3, p < 2.5 × 10-5). In the eMERGE cohort, genetically predicted BMI was associated with incisional hernia (OR 2.1 [95% CI 1.8-2.5], p = 1.4 × 10-6) and postoperative infection (OR 1.6 [95% CI 1.4-1.9], p = 3.1 × 10-6). Association findings were similar after limitation of the cohorts to those who underwent abdominal procedures. CONCLUSIONS: Clinical and Mendelian randomization studies suggest that obesity, as measured by BMI, is associated with the development of postoperative incisional hernia and infection.


Asunto(s)
Análisis de la Aleatorización Mendeliana/métodos , Obesidad/complicaciones , Complicaciones Posoperatorias/genética , Adulto , Índice de Masa Corporal , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Complicaciones Posoperatorias/etiología , Estudios Retrospectivos , Factores de Riesgo
4.
J Med Genet ; 56(7): 427-433, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30803986

RESUMEN

INTRODUCTION: Adolescent idiopathic scoliosis (AIS) is a common musculoskeletal disorder with strong evidence for a genetic contribution. CNVs play an important role in congenital scoliosis, but their role in idiopathic scoliosis has been largely unexplored. METHODS: Exome sequence data from 1197 AIS cases and 1664 in-house controls was analysed using coverage data to identify rare CNVs. CNV calls were filtered to include only highly confident CNVs with >10 average reads per region and mean log-ratio of coverage consistent with single-copy duplication or deletion. The frequency of 55 common recurrent CNVs was determined and correlated with clinical characteristics. RESULTS: Distal chromosome 16p11.2 microduplications containing the gene SH2B1 were found in 0.7% of AIS cases (8/1197). We replicated this finding in two additional AIS cohorts (8/1097 and 2/433), resulting in 0.7% (18/2727) of all AIS cases harbouring a chromosome 16p11.2 microduplication, compared with 0.06% of local controls (1/1664) and 0.04% of published controls (8/19584) (p=2.28×10-11, OR=16.15). Furthermore, examination of electronic health records of 92 455 patients from the Geisinger health system showed scoliosis in 30% (20/66) patients with chromosome 16p11.2 microduplications containing SH2B1 compared with 7.6% (10/132) of controls (p=5.6×10-4, OR=3.9). CONCLUSIONS: Recurrent distal chromosome 16p11.2 duplications explain nearly 1% of AIS. Distal chromosome 16p11.2 duplications may contribute to scoliosis pathogenesis by directly impairing growth or by altering expression of nearby genes, such as TBX6. Individuals with distal chromosome 16p11.2 microduplications should be screened for scoliosis to facilitate early treatment.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Duplicación Cromosómica , Cromosomas Humanos Par 16 , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Escoliosis/diagnóstico , Escoliosis/genética , Estudios de Casos y Controles , Mapeo Cromosómico , Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Femenino , Estudios de Asociación Genética/métodos , Heterocigoto , Humanos , Masculino , Fenotipo , Escoliosis/epidemiología , Eliminación de Secuencia , Secuenciación del Exoma
5.
Dis Esophagus ; 33(10)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-32696950

RESUMEN

Eosinophilic esophagitis (EoE) is an esophageal allergic inflammatory disorder often presenting with infant/toddler gastroesophageal reflux symptoms refractory to treatment, including acid suppression trials with histamine H2 antagonists and proton pump inhibitors. We propose to evaluate the impact of infant acid suppressant exposure in EoE. Geisinger's pediatric EoE cases were matched to controls (1:5 EoE case control ratio) using age, race, sex, and ages at other diagnoses of asthma, eczema, and environmental allergies, totaling 526 EoE cases and 2,630 controls. Comparisons between EoE cases and matched controls were tested with regard to rates of acid suppression use with H2 antagonists and PPIs during infancy. Our analyses found the use of acid suppression in infancy was positively associated with EoE: PPI (5.7% EoE cases vs. 1.6% controls; P < 0.0001), H2 antagonists (8.8% EoE cases vs. 4.5% controls; P < 0.0001). Additionally, analysis of EoE cases using acid suppression during infancy indicated a likelihood for the diagnosis with EoE at an earlier age. Early acid suppression use in infants is significantly associated with the diagnosis of EoE in childhood in this well-matched retrospective cohort study. The potential link warrants additional investigation. Our study further reinforces the evidence-based stewardship of acid suppressant use, especially in our most vulnerable populations.


Asunto(s)
Esofagitis Eosinofílica , Estudios de Casos y Controles , Niño , Esofagitis Eosinofílica/tratamiento farmacológico , Esofagitis Eosinofílica/epidemiología , Antagonistas de los Receptores H2 de la Histamina/uso terapéutico , Humanos , Lactante , Inhibidores de la Bomba de Protones/efectos adversos , Estudios Retrospectivos
6.
Hum Mutat ; 40(9): 1225-1234, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31297895

RESUMEN

Classification of variants of unknown significance is a challenging technical problem in clinical genetics. As up to one-third of disease-causing mutations are thought to affect pre-mRNA splicing, it is important to accurately classify splicing mutations in patient sequencing data. Several consortia and healthcare systems have conducted large-scale patient sequencing studies, which discover novel variants faster than they can be classified. Here, we compare the advantages and limitations of several high-throughput splicing assays aimed at mitigating this bottleneck, and describe a data set of ~5,000 variants that we analyzed using our Massively Parallel Splicing Assay (MaPSy). The Critical Assessment of Genome Interpretation group (CAGI) organized a challenge, in which participants submitted machine learning models to predict the splicing effects of variants in this data set. We discuss the winning submission of the challenge (MMSplice) which outperformed existing software. Finally, we highlight methods to overcome the limitations of MaPSy and similar assays, such as tissue-specific splicing, the effect of surrounding sequence context, classifying intronic variants, synthesizing large exons, and amplifying complex libraries of minigene species. Further development of these assays will greatly benefit the field of clinical genetics, which lack high-throughput methods for variant interpretation.


Asunto(s)
Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Empalme del ARN , Humanos , Aprendizaje Automático , Medicina de Precisión , Precursores del ARN/genética , Análisis de Secuencia de ARN , Programas Informáticos
7.
BMC Health Serv Res ; 19(1): 844, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31760949

RESUMEN

BACKGROUND: Precision medicine is set to deliver a rich new data set of genomic information. However, the number of certified specialists in the United States is small, with only 4244 genetic counselors and 1302 clinical geneticists. We conducted a national survey of 264 medical professionals to evaluate how they interpret genetic test results, determine their confidence and self-efficacy of interpreting genetic test results with patients, and capture their opinions and experiences with direct-to-consumer genetic tests (DTC-GT). METHODS: Participants were grouped into two categories, genetic specialists (genetic counselors and clinical geneticists) and medical providers (primary care, internists, physicians assistants, advanced nurse practitioners, etc.). The survey (full instrument can be found in the Additional file 1) presented three genetic test report scenarios for interpretation: a genetic risk for diabetes, genomic sequencing for symptoms report implicating a potential HMN7B: distal hereditary motor neuropathy VIIB diagnosis, and a statin-induced myopathy risk. Participants were also asked about their opinions on DTC-GT results and rank their own perceived level of preparedness to review genetic test results with patients. RESULTS: The rates of correctly interpreting results were relatively high (74.4% for the providers compared to the specialist's 83.4%) and age, prior genetic test consultation experience, and level of trust assigned to the reports were associated with higher correct interpretation rates. The self-selected efficacy and the level of preparedness to consult on a patient's genetic results were higher for the specialists than the provider group. CONCLUSION: Specialists remain the best group to assist patients with DTC-GT, however, primary care providers may still provide accurate interpretation of test results when specialists are unavailable.


Asunto(s)
Competencia Clínica/normas , Pruebas Dirigidas al Consumidor/normas , Genética/normas , Personal de Salud/normas , Autoeficacia , Adulto , Anciano , Anciano de 80 o más Años , Consejeros/normas , Femenino , Pruebas Genéticas/normas , Genómica/normas , Humanos , Masculino , Persona de Mediana Edad , Médicos/normas , Atención Primaria de Salud , Derivación y Consulta , Encuestas y Cuestionarios , Confianza , Estados Unidos , Adulto Joven
8.
Circ J ; 81(5): 629-634, 2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-28381817

RESUMEN

Twenty years ago, chromosomal abnormalities were the only identifiable genetic causes of a small fraction of congenital heart defects (CHD). Today, a de novo or inherited genetic abnormality can be identified as pathogenic in one-third of cases. We refer to them here as monogenic causes, insofar as the genetic abnormality has a readily detectable, large effect. What explains the other two-thirds? This review considers a complex genetic basis. That is, a combination of genetic mutations or variants that individually may have little or no detectable effect contribute to the pathogenesis of a heart defect. Genes in the embryo that act directly in cardiac developmental pathways have received the most attention, but genes in the mother that establish the gestational milieu via pathways related to metabolism and aging also have an effect. A growing body of evidence highlights the pathogenic significance of genetic interactions in the embryo and maternal effects that have a genetic basis. The investigation of CHD as guided by a complex genetic model could help estimate risk more precisely and logically lead to a means of prevention.


Asunto(s)
Cardiopatías Congénitas/genética , Corazón/crecimiento & desarrollo , Variación Genética , Corazón/embriología , Corazón/fisiopatología , Humanos , Mutación
9.
J Am Med Inform Assoc ; 31(10): 2271-2283, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38872284

RESUMEN

OBJECTIVES: To evaluate the efficacy of ChatGPT 4 (GPT-4) in delivering genetic information about BRCA1, HFE, and MLH1, building on previous findings with ChatGPT 3.5 (GPT-3.5). To focus on assessing the utility, limitations, and ethical implications of using ChatGPT in medical settings. MATERIALS AND METHODS: A structured survey was developed to assess GPT-4's clinical value. An expert panel of genetic counselors and clinical geneticists evaluated GPT-4's responses to these questions. We also performed comparative analysis with GPT-3.5, utilizing descriptive statistics and using Prism 9 for data analysis. RESULTS: The findings indicate improved accuracy in GPT-4 over GPT-3.5 (P < .0001). However, notable errors in accuracy remained. The relevance of responses varied in GPT-4, but was generally favorable, with a mean in the "somewhat agree" range. There was no difference in performance by disease category. The 7-question subset of the Bot Usability Scale (BUS-15) showed no statistically significant difference between the groups but trended lower in the GPT-4 version. DISCUSSION AND CONCLUSION: The study underscores GPT-4's potential role in genetic education, showing notable progress yet facing challenges like outdated information and the necessity of ongoing refinement. Our results, while showing promise, emphasizes the importance of balancing technological innovation with ethical responsibility in healthcare information delivery.


Asunto(s)
Asesoramiento Genético , Humanos , Homólogo 1 de la Proteína MutL/genética , Pruebas Genéticas/ética , Hemocromatosis/genética , Encuestas y Cuestionarios , Proteína BRCA1/genética
10.
J Am Med Inform Assoc ; 31(2): 536-541, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38037121

RESUMEN

OBJECTIVE: Given the importance AI in genomics and its potential impact on human health, the American Medical Informatics Association-Genomics and Translational Biomedical Informatics (GenTBI) Workgroup developed this assessment of factors that can further enable the clinical application of AI in this space. PROCESS: A list of relevant factors was developed through GenTBI workgroup discussions in multiple in-person and online meetings, along with review of pertinent publications. This list was then summarized and reviewed to achieve consensus among the group members. CONCLUSIONS: Substantial informatics research and development are needed to fully realize the clinical potential of such technologies. The development of larger datasets is crucial to emulating the success AI is achieving in other domains. It is important that AI methods do not exacerbate existing socio-economic, racial, and ethnic disparities. Genomic data standards are critical to effectively scale such technologies across institutions. With so much uncertainty, complexity and novelty in genomics and medicine, and with an evolving regulatory environment, the current focus should be on using these technologies in an interface with clinicians that emphasizes the value each brings to clinical decision-making.


Asunto(s)
Inteligencia Artificial , Medicina , Humanos , Biología Computacional , Genómica
11.
Front Sociol ; 8: 1122488, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274607

RESUMEN

Having worked with two large population sequencing initiatives, the separation between the potential for genomics in precision medicine and the current reality have become clear. To realize this potential requires workflows, policies, and technical architectures that are foreign to most healthcare systems. Many historical processes and regulatory barriers currently impede our progress. The future of precision medicine includes genomic data being widely available at the point of care with systems in place to manage its efficient utilization. To achieve such vision requires substantial changes in billing, reimbursement, and reporting as well as the development of new systemic and technical architectures within the healthcare system. Clinical geneticist roles will evolve into managing precision health frameworks and genetic counselors will serve crucial roles in both leading and supporting precision medicine through the implementation and maintenance of precision medicine architectures. Our current path has many obstacles that hold us back, leaving preventable deaths in the wake. Reengineering our healthcare systems to support genomics can have a major impact on patient outcomes and allow us to realize the long-sought promises of precision medicine.

12.
bioRxiv ; 2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-38076902

RESUMEN

Genetic disorders are complex and can greatly impact an individual's health and well-being. In this study, we assess the ability of ChatGPT, a language model developed by OpenAI, to answer questions related to three specific genetic disorders: BRCA1, MLH1, and HFE. ChatGPT has shown it can supply articulate answers to a wide spectrum of questions. However, its ability to answer questions related to genetic disorders has yet to be evaluated. The aim of this study is to perform both quantitative and qualitative assessments of ChatGPT's performance in this area. The ability of ChatGPT to provide accurate and useful information to patients was assessed by genetic experts. Here we show that ChatGPT answered 64.7% of the 68 genetic questions asked and was able to respond coherently to complex questions related to the three genes/conditions. Our results reveal that ChatGPT can provide valuable information to individuals seeking information about genetic disorders, however, it still has some limitations and inaccuracies, particularly in understanding human inheritance patterns. The results of this study have implications for both genomics and medicine and can inform future developments in this area. AI platforms, like ChatGPT, have significant potential in the field of genomics. As these technologies become integrated into consumer-facing products, appropriate oversight is required to ensure accurate and safe delivery of medical information. With such oversight and training specifically for genetic information, these platforms could have the potential to augment some clinical interactions.

13.
Biology (Basel) ; 12(10)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37887000

RESUMEN

About 15% of congenital heart disease (CHD) patients have a known pathogenic copy number variant. The majority of their chromosomal microarray (CMA) tests are deemed normal. Diagnostic interpretation typically ignores microdeletions smaller than 100 kb. We hypothesized that unreported microdeletions are enriched for CHD genes. We analyzed "normal" CMAs of 1762 patients who were evaluated at a pediatric referral center, of which 319 (18%) had CHD. Using CMAs from monozygotic twins or replicates from the same individual, we established a size threshold based on probe count for the reproducible detection of small microdeletions. Genes in the microdeletions were sequentially filtered by their nominal association with a CHD diagnosis, the expression level in the fetal heart, and the deleteriousness of a loss-of-function mutation. The subsequent enrichment for CHD genes was assessed using the presence of known or potentially novel genes implicated by a large whole-exome sequencing study of CHD. The unreported microdeletions were modestly enriched for both known CHD genes and those of unknown significance identified using their de novo mutation in CHD patients. Our results show that readily available "normal" CMA data can be a fruitful resource for genetic discovery and that smaller deletions should receive more attention in clinical evaluation.

14.
J Am Med Inform Assoc ; 30(3): 427-437, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36474423

RESUMEN

OBJECTIVE: The aim of this study was to analyze a publicly available sample of rule-based phenotype definitions to characterize and evaluate the variability of logical constructs used. MATERIALS AND METHODS: A sample of 33 preexisting phenotype definitions used in research that are represented using Fast Healthcare Interoperability Resources and Clinical Quality Language (CQL) was analyzed using automated analysis of the computable representation of the CQL libraries. RESULTS: Most of the phenotype definitions include narrative descriptions and flowcharts, while few provide pseudocode or executable artifacts. Most use 4 or fewer medical terminologies. The number of codes used ranges from 5 to 6865, and value sets from 1 to 19. We found that the most common expressions used were literal, data, and logical expressions. Aggregate and arithmetic expressions are the least common. Expression depth ranges from 4 to 27. DISCUSSION: Despite the range of conditions, we found that all of the phenotype definitions consisted of logical criteria, representing both clinical and operational logic, and tabular data, consisting of codes from standard terminologies and keywords for natural language processing. The total number and variety of expressions are low, which may be to simplify implementation, or authors may limit complexity due to data availability constraints. CONCLUSIONS: The phenotype definitions analyzed show significant variation in specific logical, arithmetic, and other operators but are all composed of the same high-level components, namely tabular data and logical expressions. A standard representation for phenotype definitions should support these formats and be modular to support localization and shared logic.


Asunto(s)
Registros Electrónicos de Salud , Lenguaje , Fenotipo , Narración
15.
AMIA Annu Symp Proc ; 2023: 689-698, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38222332

RESUMEN

The HerediGene Population Study is a large research study focused on identifying new genetic biomarkers for disease prevention, diagnosis, prognosis, and development of new therapeutics. A substantial IT infrastructure evolved to reach enrollment targets and return results to participants. More than 170,000 participants have been enrolled in the study to date, with 5.87% of those whole genome sequenced and 0.46% of those genotyped harboring pathogenic variants. Among other purposes, this infrastructure supports: (1) identifying candidates from clinical criteria, (2) monitoring for qualifying clinical events (e.g., blood draw), (3) contacting candidates, (4) obtaining consent electronically, (5) initiating lab orders, (6) integrating consent and lab orders into clinical workflow, (7) de-identifying samples and clinical data, (8) shipping/transmitting samples and clinical data, (9) genotyping/sequencing samples, (10) and re-identifying and returning results for participants where applicable. This study may serve as a model for similar genomic research and precision public health initiatives.


Asunto(s)
Genómica , Salud Pública , Humanos , Proyectos de Investigación , Genotipo , Genoma Humano
16.
Sci Rep ; 13(1): 1971, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737471

RESUMEN

The electronic Medical Records and Genomics (eMERGE) Network assessed the feasibility of deploying portable phenotype rule-based algorithms with natural language processing (NLP) components added to improve performance of existing algorithms using electronic health records (EHRs). Based on scientific merit and predicted difficulty, eMERGE selected six existing phenotypes to enhance with NLP. We assessed performance, portability, and ease of use. We summarized lessons learned by: (1) challenges; (2) best practices to address challenges based on existing evidence and/or eMERGE experience; and (3) opportunities for future research. Adding NLP resulted in improved, or the same, precision and/or recall for all but one algorithm. Portability, phenotyping workflow/process, and technology were major themes. With NLP, development and validation took longer. Besides portability of NLP technology and algorithm replicability, factors to ensure success include privacy protection, technical infrastructure setup, intellectual property agreement, and efficient communication. Workflow improvements can improve communication and reduce implementation time. NLP performance varied mainly due to clinical document heterogeneity; therefore, we suggest using semi-structured notes, comprehensive documentation, and customization options. NLP portability is possible with improved phenotype algorithm performance, but careful planning and architecture of the algorithms is essential to support local customizations.


Asunto(s)
Registros Electrónicos de Salud , Procesamiento de Lenguaje Natural , Genómica , Algoritmos , Fenotipo
17.
Obesity (Silver Spring) ; 30(12): 2477-2488, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36372681

RESUMEN

OBJECTIVE: High BMI is associated with many comorbidities and mortality. This study aimed to elucidate the overall clinical risk of obesity using a genome- and phenome-wide approach. METHODS: This study performed a phenome-wide association study of BMI using a clinical cohort of 736,726 adults. This was followed by genetic association studies using two separate cohorts: one consisting of 65,174 adults in the Electronic Medical Records and Genomics (eMERGE) Network and another with 405,432 participants in the UK Biobank. RESULTS: Class 3 obesity was associated with 433 phenotypes, representing 59.3% of all billing codes in individuals with severe obesity. A genome-wide polygenic risk score for BMI, accounting for 7.5% of variance in BMI, was associated with 296 clinical diseases, including strong associations with type 2 diabetes, sleep apnea, hypertension, and chronic liver disease. In all three cohorts, 199 phenotypes were associated with class 3 obesity and polygenic risk for obesity, including novel associations such as increased risk of renal failure, venous insufficiency, and gastroesophageal reflux. CONCLUSIONS: This combined genomic and phenomic systematic approach demonstrated that obesity has a strong genetic predisposition and is associated with a considerable burden of disease across all disease classes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fenómica , Humanos , Registros Electrónicos de Salud , Estudio de Asociación del Genoma Completo , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleótido Simple , Genómica , Predisposición Genética a la Enfermedad , Obesidad/epidemiología , Obesidad/genética , Fenotipo , Costo de Enfermedad
18.
J Pers Med ; 12(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36579594

RESUMEN

The clinical use of genomic analysis has expanded rapidly resulting in an increased availability and utility of genomic information in clinical care. We have developed an infrastructure utilizing informatics tools and clinical processes to facilitate the use of whole genome sequencing data for population health management across the healthcare system. Our resulting framework scaled well to multiple clinical domains in both pediatric and adult care, although there were domain specific challenges that arose. Our infrastructure was complementary to existing clinical processes and well-received by care providers and patients. Informatics solutions were critical to the successful deployment and scaling of this program. Implementation of genomics at the scale of population health utilizes complicated technologies and processes that for many health systems are not supported by current information systems or in existing clinical workflows. To scale such a system requires a substantial clinical framework backed by informatics tools to facilitate the flow and management of data. Our work represents an early model that has been successful in scaling to 29 different genes with associated genetic conditions in four clinical domains. Work is ongoing to optimize informatics tools; and to identify best practices for translation to smaller healthcare systems.

19.
J Am Med Inform Assoc ; 29(8): 1342-1349, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35485600

RESUMEN

OBJECTIVE: The Genomic Medicine Working Group of the National Advisory Council for Human Genome Research virtually hosted its 13th genomic medicine meeting titled "Developing a Clinical Genomic Informatics Research Agenda". The meeting's goal was to articulate a research strategy to develop Genomics-based Clinical Informatics Tools and Resources (GCIT) to improve the detection, treatment, and reporting of genetic disorders in clinical settings. MATERIALS AND METHODS: Experts from government agencies, the private sector, and academia in genomic medicine and clinical informatics were invited to address the meeting's goals. Invitees were also asked to complete a survey to assess important considerations needed to develop a genomic-based clinical informatics research strategy. RESULTS: Outcomes from the meeting included identifying short-term research needs, such as designing and implementing standards-based interfaces between laboratory information systems and electronic health records, as well as long-term projects, such as identifying and addressing barriers related to the establishment and implementation of genomic data exchange systems that, in turn, the research community could help address. DISCUSSION: Discussions centered on identifying gaps and barriers that impede the use of GCIT in genomic medicine. Emergent themes from the meeting included developing an implementation science framework, defining a value proposition for all stakeholders, fostering engagement with patients and partners to develop applications under patient control, promoting the use of relevant clinical workflows in research, and lowering related barriers to regulatory processes. Another key theme was recognizing pervasive biases in data and information systems, algorithms, access, value, and knowledge repositories and identifying ways to resolve them.


Asunto(s)
Informática Médica , Registros Electrónicos de Salud , Genoma Humano , Genómica , Humanos , Proyectos de Investigación
20.
BMC Infect Dis ; 11: 105, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21510889

RESUMEN

BACKGROUND: Seasonal respiratory syncytial virus (RSV) epidemics occur annually in temperate climates and result in significant pediatric morbidity and increased health care costs. Although RSV epidemics generally occur between October and April, the size and timing vary across epidemic seasons and are difficult to predict accurately. Prediction of epidemic characteristics would support management of resources and treatment. METHODS: The goals of this research were to examine the empirical relationships among early exponential growth rate, total epidemic size, and timing, and the utility of specific parameters in compartmental models of transmission in accounting for variation among seasonal RSV epidemic curves. RSV testing data from Primary Children's Medical Center were collected on children under two years of age (July 2001-June 2008). Simple linear regression was used explore the relationship between three epidemic characteristics (final epidemic size, days to peak, and epidemic length) and exponential growth calculated from four weeks of daily case data. A compartmental model of transmission was fit to the data and parameter estimated used to help describe the variation among seasonal RSV epidemic curves. RESULTS: The regression results indicated that exponential growth was correlated to epidemic characteristics. The transmission modeling results indicated that start time for the epidemic and the transmission parameter co-varied with the epidemic season. CONCLUSIONS: The conclusions were that exponential growth was somewhat empirically related to seasonal epidemic characteristics and that variation in epidemic start date as well as the transmission parameter over epidemic years could explain variation in seasonal epidemic size. These relationships are useful for public health, health care providers, and infectious disease researchers.


Asunto(s)
Epidemias , Hospitales Pediátricos , Modelos Biológicos , Infecciones por Virus Sincitial Respiratorio/epidemiología , Estaciones del Año , Niño , Preescolar , Brotes de Enfermedades , Humanos , Morbilidad , Análisis de Regresión , Infecciones por Virus Sincitial Respiratorio/transmisión , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Utah/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA