Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Am J Transplant ; 15(4): 974-83, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25676635

RESUMEN

Previous attempts of α-1,3-galactocyltransferase knockout (GalTKO) pig bone marrow (BM) transplantation (Tx) into baboons have demonstrated a loss of macro-chimerism within 24 h in most cases. In order to achieve improved engraftment with persistence of peripheral chimerism, we have developed a new strategy of intra-bone BM (IBBM) Tx. Six baboons received GalTKO BM cells, with one-half of the cells transplanted into the bilateral tibiae directly and the remaining cells injected intravenously (IBBM/BM-Tx) with a conditioning immunosuppressive regimen. In order to assess immune responses induced by the combined IBBM/BM-Tx, three recipients received donor SLA-matched GalTKO kidneys in the peri-operative period of IBBM/BM-Tx (Group 1), and the others received kidneys 2 months after IBBM/BM-Tx (Group 2). Peripheral macro-chimerism was continuously detectable for up to 13 days (mean 7.7 days; range 3-13) post-IBBM/BM-Tx and in three animals, macro-chimerism reappeared at days 10, 14 and 21. Pig CFUs, indicating porcine progenitor cell engraftment, were detected in the host BM in four of six recipients on days 14, 15, 19 and 28. In addition, anti-pig unresponsiveness was observed by in vitro assays. GalTKO/pCMV-kidneys survived for extended periods (47 and 60 days). This strategy may provide a potent adjunct for inducing xenogeneic tolerance through BM-Tx.


Asunto(s)
Células de la Médula Ósea/citología , Xenoinjertos , Animales , Trasplante de Médula Ósea , Humanos , Incidencia , Papio , Porcinos
2.
Science ; 357(6349): 378-381, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28751604

RESUMEN

Adhesion to wet and dynamic surfaces, including biological tissues, is important in many fields but has proven to be extremely challenging. Existing adhesives are cytotoxic, adhere weakly to tissues, or cannot be used in wet environments. We report a bioinspired design for adhesives consisting of two layers: an adhesive surface and a dissipative matrix. The former adheres to the substrate by electrostatic interactions, covalent bonds, and physical interpenetration. The latter amplifies energy dissipation through hysteresis. The two layers synergistically lead to higher adhesion energies on wet surfaces as compared with those of existing adhesives. Adhesion occurs within minutes, independent of blood exposure and compatible with in vivo dynamic movements. This family of adhesives may be useful in many areas of application, including tissue adhesives, wound dressings, and tissue repair.


Asunto(s)
Materiales Biocompatibles/química , Adhesivos Tisulares/química , Animales , Ratas , Electricidad Estática , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA