Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 629(8014): 1091-1099, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38750363

RESUMEN

The baobab trees (genus Adansonia) have attracted tremendous attention because of their striking shape and distinctive relationships with fauna1. These spectacular trees have also influenced human culture, inspiring innumerable arts, folklore and traditions. Here we sequenced genomes of all eight extant baobab species and argue that Madagascar should be considered the centre of origin for the extant lineages, a key issue in their evolutionary history2,3. Integrated genomic and ecological analyses revealed the reticulate evolution of baobabs, which eventually led to the species diversity seen today. Past population dynamics of Malagasy baobabs may have been influenced by both interspecific competition and the geological history of the island, especially changes in local sea levels. We propose that further attention should be paid to the conservation status of Malagasy baobabs, especially of Adansonia suarezensis and Adansonia grandidieri, and that intensive monitoring of populations of Adansonia za is required, given its propensity for negatively impacting the critically endangered Adansonia perrieri.


Asunto(s)
Adansonia , Filogenia , Adansonia/clasificación , Adansonia/genética , Biodiversidad , Conservación de los Recursos Naturales , Ecología , Especies en Peligro de Extinción , Evolución Molecular , Genoma de Planta/genética , Madagascar , Dinámica Poblacional , Elevación del Nivel del Mar
2.
Gels ; 10(2)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38391471

RESUMEN

Cellulose aerogels have great prospects for noise reduction applications due to their sustainable value and superior 3D interconnected porous structures. The drying principle is a crucial factor in the preparation process for developing high-performance aerogels, particularly with respect to achieving high acoustic absorption properties. In this study, multifunctional cellulose nanocrystal (CNC) aerogels were conveniently prepared using two distinct freeze-drying principles: refrigerator conventional freezing (RCF) and liquid nitrogen unidirectional freezing (LnUF). The results indicate that the rapid RCF process resulted in a denser CNC aerogel structure with disordered larger pores, causing a stronger compressive performance (Young's modulus of 40 kPa). On the contrary, the LnUF process constructed ordered structures of CNC aerogels with a lower bulk density (0.03 g/cm3) and smaller apertures, resulting in better thermal stability, higher diffuse reflection across visible light, and especially increased acoustic absorption performance at low-mid frequencies (600-3000 Hz). Moreover, the dissipation mechanism of sound energy in the fabricated CNC aerogels is predicted by a designed porous media model. This work not only paves the way for optimizing the performance of aerogels through structure control, but also provides a new perspective for developing sustainable and efficient acoustic absorptive materials for a wide range of applications.

3.
RSC Adv ; 14(31): 22229-22237, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39010912

RESUMEN

Bio-based materials with excellent acoustic absorption properties are in great demand in architecture, interior, and human settlement applications for efficient noise control. In this study, crayfish shells, a form of kitchen waste, are utilized as the primary material to produce ultralight and multifunctional chitin aerogels, which effectively eliminate noise. Different replacement solvents and freezing rates were employed to regulate the porous structures of chitin aerogels, and their resulting acoustic absorption performance was investigated. Results demonstrate that employing deionized water as the replacement solvent and utilizing a common-freeze mode (frozen via refrigerator at -26 °C) can produce chitin aerogels with larger porosity (96.26%) and apertures, as well as thicker pore walls. This results in superior broadband acoustic absorption performance (with a maximum absorption coefficient reaching 0.99) and higher Young's modulus (28 kPa). Conversely, chitin aerogels solvent-exchanged with tert-butyl alcohol or subjected to quick-freeze mode (frozen via liquid nitrogen) exhibit smaller porosity (92.32% and 94.84%) and apertures, thereby possessing stronger diffuse reflection of visible light (average reflectance of 94.30% and 88.18%), and enhanced low-frequency (500 to 1600 Hz) acoustic absorption properties. Additionally, the acoustic absorption mechanism of fabricated chitin aerogels was predicted using a simple three-parameter analysis Johnson-Champoux-Allard-Lafarge (JCAL) model. This study presents a novel approach to developing multifunctional biomass materials with excellent acoustic absorption properties, which could have a wide range of potential applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA