Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(25): e2221313120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307446

RESUMEN

As a crucial nitrogen source, nitrate (NO3-) is a key nutrient for plants. Accordingly, root systems adapt to maximize NO3- availability, a developmental regulation also involving the phytohormone auxin. Nonetheless, the molecular mechanisms underlying this regulation remain poorly understood. Here, we identify low-nitrate-resistant mutant (lonr) in Arabidopsis (Arabidopsis thaliana), whose root growth fails to adapt to low-NO3- conditions. lonr2 is defective in the high-affinity NO3- transporter NRT2.1. lonr2 (nrt2.1) mutants exhibit defects in polar auxin transport, and their low-NO3--induced root phenotype depends on the PIN7 auxin exporter activity. NRT2.1 directly associates with PIN7 and antagonizes PIN7-mediated auxin efflux depending on NO3- levels. These results reveal a mechanism by which NRT2.1 in response to NO3- limitation directly regulates auxin transport activity and, thus, root growth. This adaptive mechanism contributes to the root developmental plasticity to help plants cope with changes in NO3- availability.


Asunto(s)
Arabidopsis , Transportadores de Nitrato , Nitratos , Aclimatación , Transporte Biológico , Ácidos Indolacéticos
2.
Phys Rev Lett ; 132(9): 090401, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489615

RESUMEN

The quantum battery (QB) makes use of quantum effects to store and supply energy, which may outperform its classical counterpart. However, there are two challenges in this field. One is that the environment-induced decoherence causes the energy loss and aging of the QB, the other is that the decreasing of the charger-QB coupling strength with increasing their distance makes the charging of the QB become inefficient. Here, we propose a QB scheme to realize a remote charging via coupling the QB and the charger to a rectangular hollow metal waveguide. It is found that an ideal charging is realized as long as two bound states are formed in the energy spectrum of the total system consisting of the QB, the charger, and the electromagnetic environment in the waveguide. Using the constructive role of the decoherence, our QB is immune to the aging. Additionally, without resorting to the direct charger-QB interaction, our scheme works in a way of long-range and wireless-like charging. Effectively overcoming the two challenges, our result supplies an insightful guideline to the practical realization of the QB by reservoir engineering.

3.
Inorg Chem ; 63(31): 14609-14622, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39049593

RESUMEN

Metal-organic cages form well-defined microenvironments that can enhance the catalytic proficiency of encapsulated transition metal complexes (TMCs). We introduce a screening protocol to efficiently identify TMCs that are promising candidates for encapsulation in the Ga4L612- nanocage. We obtain TMCs from the Cambridge Structural Database with geometric and electronic characteristics amenable to encapsulation and mine the text of associated manuscripts to curate TMCs with documented catalytic functionality. By docking candidate TMCs inside the nanocage cavity and carrying out electronic structure calculations, we identify a subset of successfully optimized candidates (TMC-34) and observe that encapsulated guests occupy an average of 60% of the cavity volume, in line with previous observations. Notably, some guests occupy as much as 72% of the cavity as a result of linker rotation. Encapsulation has a universal effect on the electrostatic potential (ESP), systematically decreasing the ESP at the metal center of each TMC in the TMC-34 data set, while minimally altering TMC metal partial charges. Collectively these observations support geometry-based screening of potential guests and suggest that encapsulation in Ga4L612- cages could electrostatically stabilize diverse cationic or electropositive intermediates. We highlight candidate guests with associated known reactivity and solubility most amenable for encapsulation in experimental follow-up studies.

4.
Phys Chem Chem Phys ; 26(22): 16091-16095, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38780310

RESUMEN

In light of recently reported monovalent lanthanide in borozene complexes LnB8- (Ln = La, Pr, Tb, Tm, Yb), the corresponding AnB8- (An = Ac, Pa, Bk, Md, No) actinide species within the same group were theoretically investigated in respect of oxidation state, stability, electronic structure and chemical bonding pattern. Our investigations reveal the feasibility of actinides, especially for the late actinide borozene compounds (BkB8-, MdB8-, NoB8-) adopting a monovalent oxidation state of +I, a phenomenon fine-tuned by the doubly aromatic borozene B82-. Early actinides (AcB8-, PaB8-) however exhibit a tendency towards higher trivalent oxidation states.

5.
Phys Chem Chem Phys ; 26(24): 17370-17382, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38860760

RESUMEN

The concept of aromaticity is primarily invented to account for the high stability of conjugated organic compounds that possess a specific structural and chemical stability with (4n + 2) π electrons. In 1988, quasi-aromaticity was theoretically proposed for the Mo3S44+ core in the Mo3(µ3-S)(µ-S)3(χ-dtp)3(µ-dtp) L compound (χ: chelating ligand; dtp: (EtO)2PS2-) illustrated by canonical molecular orbitals. However, the origin of the quasi-aromaticity and chemical bonding remains ambiguous, lacking a thorough analysis in terms of stability and quantitative measurement of the aromatic character. Thus, in this work, we systematically reported the electronic structure and aromaticity of a series of polynuclear metal chalcogenide clusters [M3X4(H2O)9]4+ (M = Cr, Mo, W, and Sg; X = O, S, Se, and Te) to explore an efficient tool of NICS index values at specific points to measure the quasi-aromaticity and to figure out the (d-p-d) π three-center bonding as the predominant origin from the arrangement of three Mo atoms and three bridged X atoms. Interestingly, derived from the Mo3⋯S3 quasi-plane, the extended sandwich cluster model of a S3⋯Mo3⋯S3 (Mo3S6) structure can be seen as the seed unit of the popular MoS2 nanomaterials, with the resemblance between both molecular and periodic systems regarding geometries, electronic structures, and chemical bonding. Additionally, the highly symmetric Mo3S4 core in [Mo3X4(H2O)9]4+ can be arranged in a staggered and stacked manner to create the Mo6S82- building block, corresponding to the crystalline structures in BaMo6S8 Chevrel phases, albeit with slight deformations. But the neutral Mo6S8 cluster can be seen as the seed structure for the Mo3S4 periodic materials for the high resemblance in terms of geometry, electronic structures and chemical bonding. Drawing upon the observed similarities between cluster models and materials, we propose a new concept termed "cluster-assembly" materials. This concept involves the expansion from a high-symmetry and/or aromatic stable cluster seed unit to form the corresponding derivative materials, presenting an alternative paradigm for investigating crystals and enriching our comprehension of the stabilities exhibited by both gas-phase clusters and solid-state materials. The concept of "cluster-assembly" materials not only contributes to the formulation of design strategies for novel materials or stable clusters but also provides valuable insights into the extension of periodic aromaticity.

6.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38982332

RESUMEN

AIMS: A severe lockdown occurred in Wuhan during the COVID-19 pandemic, followed by a remission phase in the pandemic's aftermath. This study analyzed the bacterial and fungal profiles of respiratory pathogens in patients hospitalized with non-COVID-19 lower respiratory tract infections (LRTIs) during this period to determine the pathogen profile distributions in different age groups and hospital departments in Wuhan. METHODS AND RESULTS: We collected reports of pathogen testing in the medical records of patients hospitalized with non-COVID-19 LRTI between 2019 and 2021. These cases were tested for bacterial and fungal pathogens using 16S and internal transcribed spacer sequencing methods on bronchoalveolar lavage fluid samples. The study included 1368 cases. The bacteria most commonly identified were Streptococcus pneumoniae (12.50%) and Mycoplasma pneumoniae (8.33%). The most commonly identified fungi were Aspergillus fumigatus (2.49%) and Pneumocystis jirovecii (1.75%). Compared to 2019, the S. pneumoniae detection rates increased significantly in 2021, and those of M. pneumoniae decreased. Streptococcus pneumoniae was detected mainly in children. The detection rates of almost all fungi were greater in the respiratory Intensive Care Unit compared to respiratory medicine. Streptococcus pneumoniae and M. pneumoniae were detected more frequently in the pediatric department. CONCLUSIONS: Before and after the COVID-19 outbreak, a change in the common pathogen spectrum was detected in patients with non-COVID-19 in Wuhan, with the greatest change occurring among children. The major pathogens varied by the patient's age and the hospital department.


Asunto(s)
COVID-19 , Hospitalización , Infecciones del Sistema Respiratorio , Humanos , China/epidemiología , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/epidemiología , Persona de Mediana Edad , Niño , Masculino , Adulto , Femenino , Preescolar , Adolescente , Anciano , Lactante , COVID-19/epidemiología , Hongos/aislamiento & purificación , Hongos/genética , Hongos/clasificación , Adulto Joven , Streptococcus pneumoniae/aislamiento & purificación , Streptococcus pneumoniae/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Mycoplasma pneumoniae/aislamiento & purificación , Mycoplasma pneumoniae/genética , Líquido del Lavado Bronquioalveolar/microbiología , Líquido del Lavado Bronquioalveolar/virología
7.
Acta Pharmacol Sin ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689095

RESUMEN

Endothelial senescence, aging-related inflammation, and mitochondrial dysfunction are prominent features of vascular aging and contribute to the development of aging-associated vascular disease. Accumulating evidence indicates that DNA damage occurs in aging vascular cells, especially in endothelial cells (ECs). However, the mechanism of EC senescence has not been completely elucidated, and so far, there is no specific drug in the clinic to treat EC senescence and vascular aging. Here we show that various aging stimuli induce nuclear DNA and mitochondrial damage in ECs, thus facilitating the release of cytoplasmic free DNA (cfDNA), which activates the DNA-sensing adapter protein STING. STING activation led to a senescence-associated secretory phenotype (SASP), thereby releasing pro-aging cytokines and cfDNA to further exacerbate mitochondrial damage and EC senescence, thus forming a vicious circle, all of which can be suppressed by STING knockdown or inhibition. Using next-generation RNA sequencing, we demonstrate that STING activation stimulates, whereas STING inhibition disrupts pathways associated with cell senescence and SASP. In vivo studies unravel that endothelial-specific Sting deficiency alleviates aging-related endothelial inflammation and mitochondrial dysfunction and prevents the development of atherosclerosis in mice. By screening FDA-approved vasoprotective drugs, we identified Cilostazol as a new STING inhibitor that attenuates aging-related endothelial inflammation both in vitro and in vivo. We demonstrated that Cilostazol significantly inhibited STING translocation from the ER to the Golgi apparatus during STING activation by targeting S162 and S243 residues of STING. These results disclose the deleterious effects of a cfDNA-STING-SASP-cfDNA vicious circle on EC senescence and atherogenesis and suggest that the STING pathway is a promising therapeutic target for vascular aging-related diseases. A proposed model illustrates the central role of STING in mediating a vicious circle of cfDNA-STING-SASP-cfDNA to aggravate age-related endothelial inflammation and mitochondrial damage.

8.
Small ; 19(10): e2205848, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36564362

RESUMEN

The innate inverse Auger effect within bulk silicon can result in multiple carrier generation. Observation of this effect is reliant upon low high-energy photon reflectance and high-quality surface passivation. In the photovoltaics industry, metal-assisted chemical etching (MACE) to afford black silicon (b-Si) can provide a low high-energy photon reflectance. However, an industrially feasible and cheaper technology to conformally passivate the outer-shell defects of these nanowires is currently lacking. Here, a technology is introduced to infiltrate black silicon nanopores with a simple and vacuum-free organic passivation layer that affords millisecond-level minority carrier lifetimes and matches perfectly with existing solution-based processing of the MACE black silicon. Advancements such as the demonstration of an excellent passivation effect whilst also being low reflectance provide a new technological route for inverse Auger multiple carrier generation and an industrially feasible technical scheme for the development of the MACE b-Si solar cells.

9.
Biomacromolecules ; 24(9): 4123-4137, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37584644

RESUMEN

Citrate-based polymers are commonly used to create biodegradable implants. In an era of personalized medicine, it is highly desired that the degradation rates of citrate-based implants can be artificially regulated as required during clinical applications. Unfortunately, current citrate-based polymers only undergo passive degradation, which follows a specific degradation profile. This presents a considerable challenge for the use of citrate-based implants. To address this, a novel citrate-based polyester elastomer (POCSS) with artificially regulatable degradation rate is developed by incorporating disulfide bonds (S-S) into the backbone chains of the crosslinking network of poly(octamethylene citrate) (POC). This POCSS exhibits excellent and tunable mechanical properties, notable antibacterial properties, good biocompatibility, and low biotoxicity of its degradation products. The degradation rate of the POCSS can be regulated by breaking the S-S in its crosslinking network using glutathione (GSH). After a period of subcutaneous implantation of POCSS scaffolds in mice, the degradation rate eventually increased by 2.46 times through the subcutaneous administration of GSH. Notably, we observed no significant adverse effects on its surrounding tissues, the balance of the physiological environment, major organs, and the health status of the mice during degradation.


Asunto(s)
Elastómeros , Poliésteres , Ratones , Animales , Elastómeros/química , Poliésteres/química , Ácido Cítrico , Andamios del Tejido/química , Materiales Biocompatibles/química , Ingeniería de Tejidos , Polímeros/química , Citratos/química
10.
Arch Virol ; 168(12): 291, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962775

RESUMEN

BACKGROUND: Acute respiratory infections in children are a global public health challenge. Owing to the coronavirus disease (COVID-19) pandemic, non-pharmaceutical interventions, including patient isolation, social distancing, hand washing, and mask wearing, have been widely implemented, impacting the transmission of common respiratory viruses. The aim of this study was to clarify the epidemiological features of respiratory viruses in children less than 14 years of age in Wuhan before and after COVID-19. METHODS: Respiratory specimens were collected from patients aged < 14 years at two hospitals in Wuhan, China, from January 2018 to December 2021. Seven respiratory viruses were identified using an immunofluorescence assay. Pathogen profiles and seasonality were analysed. RESULTS: The number of visits and virus detection rate decreased dramatically after February 2020. The respiratory virus detection rate peaked in January and December and decreased dramatically in February and August. The detection rate was lower in 2021 than in 2018 and 2019. Respiratory syncytial virus (RSV) was identified as the leading pathogen in children aged < 1 year and 1-4 years before and after the COVID-19 pandemic. In children aged 5-14 years, influenza virus was detected at the highest rate before, and RSV after, the COVID-19 pandemic. RSV was the most common virus in coinfections. CONCLUSIONS: This study revealed the epidemiological patterns of common respiratory viruses from 2018 to 2021. The spectrum of pathogens involved in paediatric respiratory infections had partly changed. Non-pharmaceutical interventions resulted in fewer opportunities for the spread of common viruses but also in an "immunity debt" that could have negative consequences when the pandemic is under control in Wuhan.


Asunto(s)
COVID-19 , Infecciones por Coronavirus , Coronavirus , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Humanos , Niño , Adolescente , Pandemias , China/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , COVID-19/epidemiología
11.
Proc Natl Acad Sci U S A ; 117(52): 32954-32961, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318176

RESUMEN

Water under nanoconfinement at ambient conditions has exhibited low-dimensional ice formation and liquid-solid phase transitions, but with structural and dynamical signatures that map onto known regions of water's phase diagram. Using terahertz (THz) absorption spectroscopy and ab initio molecular dynamics, we have investigated the ambient water confined in a supramolecular tetrahedral assembly, and determined that a dynamically distinct network of 9 ± 1 water molecules is present within the nanocavity of the host. The low-frequency absorption spectrum and theoretical analysis of the water in the Ga4L612- host demonstrate that the structure and dynamics of the encapsulated droplet is distinct from any known phase of water. A further inference is that the release of the highly unusual encapsulated water droplet creates a strong thermodynamic driver for the high-affinity binding of guests in aqueous solution for the Ga4L612- supramolecular construct.


Asunto(s)
Galio/química , Simulación de Dinámica Molecular , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos
12.
Biochem Genet ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962691

RESUMEN

An increasing number of circRNAs have been found to be involved in the development of gastric cancer. However, the function of circ_0003789 in regulating gastric cancer progression is unclear. Here, we aimed to investigate the expression, function and molecular mechanism of circ_0003789 in gastric cancer pathogenesis. Circ_0003789, miR-429 and ZFP36 ring finger protein like 2 (ZFP36L2) mRNA were quantified by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was illustrated by 5-Ethynyl-2'-deoxyuridine (Edu), cell counting kit-8 (CCK-8) and colony formation assays. Apoptosis was determined by flow cytometry. Protein level was detected by Western blotting assay. Xenograft assays were used for functional analysis of circ_0003789 in vivo. The relationship between miR-429 and circ_0003789 or ZFP36L2 was predicted by starbase3.0 online database and identified by dual luciferase reporter assay. The expression levels of circ_0003789 and ZFP36L2 were significantly upregulated in gastric cancer tissues and cells, while the expression of miR-429 was downregulated. Downregulation of circ_0003789 inhibited gastric cancer cell growth and invasion and promoted apoptosis in vitro. Circ_0003789 acted as a sponge of miR-429. Moreover, miR-429 silencing by miR-429 inhibitors attenuated the effects of circ_0003789 interference on cell growth, apoptosis and invasion. ZFP36L2 was targeted by miR-429, and the effects of miR-429 on cell growth, invasion and apoptosis were attenuated by ZFP36L2 overexpression. Circ_0003789 could enhance ZFP36L2 expression by interacting with miR-429. Silencing of circ_0003789 inhibited tumor growth in vivo. Circ_0003789 regulates tumor progression in gastric cancer through miR-429/ZFP36L2 axis. This finding implies that circ_0003789 may be a therapeutic target for gastric cancer.

13.
Gastroenterology ; 160(6): 2103-2118, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33465371

RESUMEN

BACKGROUND & AIMS: Liver tight junctions (TJs) establish tissue barriers that isolate bile from the blood circulation. TJP2/ZO-2-inactivating mutations cause progressive cholestatic liver disease in humans. Because the underlying mechanisms remain elusive, we characterized mice with liver-specific inactivation of Tjp2. METHODS: Tjp2 was deleted in hepatocytes, cholangiocytes, or both. Effects on the liver were assessed by biochemical analyses of plasma, liver, and bile and by electron microscopy, histology, and immunostaining. TJ barrier permeability was evaluated using fluorescein isothiocyanate-dextran (4 kDa). Cholic acid (CA) diet was used to assess susceptibility to liver injury. RESULTS: Liver-specific deletion of Tjp2 resulted in lower Cldn1 protein levels, minor changes to the TJ, dilated canaliculi, lower microvilli density, and aberrant radixin and bile salt export pump (BSEP) distribution, without an overt increase in TJ permeability. Hepatic Tjp2-defcient mice presented with mild progressive cholestasis with lower expression levels of bile acid transporter Abcb11/Bsep and detoxification enzyme Cyp2b10. A CA diet tolerated by control mice caused severe cholestasis and liver necrosis in Tjp2-deficient animals. 1,4-Bis[2-(3,5-dichloropyridyloxy)]benzene ameliorated CA-induced injury by enhancing Cyp2b10 expression, and ursodeoxycholic acid provided partial improvement. Inactivating Tjp2 separately in hepatocytes or cholangiocytes showed only mild CA-induced liver injury. CONCLUSION: Tjp2 is required for normal cortical distribution of radixin, canalicular volume regulation, and microvilli density. Its inactivation deregulated expression of Cldn1 and key bile acid transporters and detoxification enzymes. The mice provide a novel animal model for cholestatic liver disease caused by TJP2-inactivating mutations in humans.


Asunto(s)
Canalículos Biliares/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Colestasis/genética , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-2/genética , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/genética , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Animales , Hidrocarburo de Aril Hidroxilasas/metabolismo , Ácidos y Sales Biliares/metabolismo , Canalículos Biliares/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Colagogos y Coleréticos/uso terapéutico , Ácido Cólico , Claudina-1/metabolismo , Familia 2 del Citocromo P450/metabolismo , Proteínas del Citoesqueleto/metabolismo , Células Epiteliales , Femenino , Fibrosis , Predisposición Genética a la Enfermedad , Hepatocitos , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Mutación , Oxazoles/uso terapéutico , Permeabilidad , Factores Protectores , ARN Mensajero/metabolismo , Esteroide Hidroxilasas/metabolismo , Uniones Estrechas/ultraestructura , Ácido Ursodesoxicólico/uso terapéutico , Proteína de la Zonula Occludens-2/deficiencia
14.
Biomacromolecules ; 23(10): 4268-4281, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36094894

RESUMEN

As a biodegradable elastomer, poly(1,8-octanediol-co-citrate) (POC) has been widely applied in tissue engineering and implantable electronics. However, the unclear degradation mechanism has posed a great challenge for the better application and development of POC. To reveal the degradation mechanism, here, we present a systematic investigation into in vivo and in vitro degradation behaviors of POC. Initially, critical factors, including chemical structures, hydrophilic and water-absorbency characteristics, and degradation reaction of POC, are investigated. Then, various degradation-induced changes during in vitro degradation of POC-x (POC with different cross-linking densities) are monitored and discussed. The results show that (1) cross-linking densities exponentially drop with degradation time; (2) mass loss and PBS-absorption ratio grow nonlinearly; (3) the morphology on the cross-section changes from flat to rough at a microscopic level; (4) the cubic samples keep swelling until they collapse into fragments from a macro view; and (5) the mechanical properties experience a sharp drop at the beginning of degradation. Finally, the in vivo degradation behaviors of POC-x are investigated, and the results are similar to those in vitro. The comprehensive assessment suggests that the in vitro and in vivo degradation of POC occurs primarily through bulk erosion. Inflammation responses triggered by the degradation of POC-x are comparable to poly(lactic acid), or even less obvious. In addition, the mechanical evaluation of POC in the simulated application environment is first proposed and conducted in this work for a more appropriate application. The degradation mechanism of POC revealed will greatly promote the further development and application of POC-based materials in the biomedical field.


Asunto(s)
Ácido Cítrico , Elastómeros , Materiales Biocompatibles/química , Citratos , Elastómeros/química , Ensayo de Materiales , Polímeros , Agua
15.
Am J Hematol ; 97(9): 1159-1169, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35726449

RESUMEN

With lowering costs of sequencing and genetic profiling techniques, genetic drivers can now be detected readily in tumors but current prognostic models for Natural-killer/T cell lymphoma (NKTCL) have yet to fully leverage on them for prognosticating patients. Here, we used next-generation sequencing to sequence 260 NKTCL tumors, and trained a genomic prognostic model (GPM) with the genomic mutations and survival data from this retrospective cohort of patients using LASSO Cox regression. The GPM is defined by the mutational status of 13 prognostic genes and is weakly correlated with the risk-features in International Prognostic Index (IPI), Prognostic Index for Natural-Killer cell lymphoma (PINK), and PINK-Epstein-Barr virus (PINK-E). Cox-proportional hazard multivariate regression also showed that the new GPM is independent and significant for both progression-free survival (PFS, HR: 3.73, 95% CI 2.07-6.73; p < .001) and overall survival (OS, HR: 5.23, 95% CI 2.57-10.65; p = .001) with known risk-features of these indices. When we assign an additional risk-score to samples, which are mutant for the GPM, the Harrell's C-indices of GPM-augmented IPI, PINK, and PINK-E improved significantly (p < .001, χ2 test) for both PFS and OS. Thus, we report on how genomic mutational information could steer toward better prognostication of NKTCL patients.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfoma Extranodal de Células NK-T , Supervivencia sin Enfermedad , Genómica , Herpesvirus Humano 4 , Humanos , Pronóstico , Estudios Retrospectivos
16.
Lipids Health Dis ; 21(1): 88, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123675

RESUMEN

BACKGROUND: Although dyslipidaemia may have a crucial impact on cardiovascular health in adults, there is a lack of specific data in transitional-age youth. Therefore, this study attempted to evaluate the association of dyslipidaemia with fat-to-muscle ratio (FMR), and establish FMR thresholds for diagnosing dyslipidaemia in transitional-age youth. METHODS: One thousand six hundred sixty individuals aged 16 to 24 years from the baseline of a subcohort in the Northwest China Natural Population Cohort: Ningxia Project were analysed. Anthropometric characteristics were gauged by a bioelectrical impedance analyser, and dyslipidaemia components were measured using a Beckman AU480 chemistry analyser. Additionally, this study used logistic regression to estimate the risk of dyslipidaemia based on FMR quintiles, and calculate the gender-specific ideal cut-off values of dyslipidaemia and its components by the receiver operating characteristic (ROC) curve. RESULTS: Of the 1660 participants, aged 19.06 ± 1.14 years, 558 males and 1102 females. The prevalence of dyslipidaemia was 13.4% and was significantly associated with FMR quintiles among all participants (P < 0.05). The ideal values of FMR in diagnosing dyslipidaemia were 0.2224 for males and 0.4809 for females, while males had a higher AUC than females (0.7118 vs. 0.6656). Meanwhile, high FMR values were significantly associated with adverse outcomes of dyslipidaemia, hypercholesterolemia and hypertriglyceridaemia (P < 0.05). CONCLUSIONS: The FMR was positively correlated with the prevalence of dyslipidaemia. The FMR can be used as an effective body composition index for diagnosing dyslipidaemia, especially in males, and preventive strategies should be initiated in transitional-age youth to decrease obesity-related dyslipidaemia.


Asunto(s)
Dislipidemias , Hiperlipidemias , Adolescente , Adulto , Antropometría , Índice de Masa Corporal , Dislipidemias/diagnóstico , Dislipidemias/epidemiología , Femenino , Humanos , Masculino , Músculos , Obesidad
17.
World J Surg Oncol ; 20(1): 268, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36008845

RESUMEN

BACKGROUND: Abnormally expressed in diverse cancers, circZFR has been correlated with clinical outcomes of cancer patients. Aim of this meta-analysis was to elucidate the prognostic role of circZFR in multiple human malignancies. METHODS: Literature retrieval was conducted by systematically searching on Pubmed, Web of Science, and the Cochrane Library up to December 2nd, 2021. Hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were pooled to evaluate the association between circZFR expression and overall survival (OS). The reliability of the pooled results was assessed through sensitivity analysis and the publication bias was measured by Begg's and Egger's test. RESULTS: A total of seventeen studies comprising 1098 Chinese patients were enrolled in this meta-analysis. Results demonstrated that high circZFR expression was correlated with an unfavorable OS (HR = 2.14, 95% CI 1.74, 2.64). High circZFR expression predicted larger tumor size (OR = 2.79, 95% CI 1.52, 5.12), advanced clinical stage (OR = 3.38, 95% CI 1.49, 7.65), tendentiousness of lymph node metastasis (LNM) (OR = 3.08, 95% CI 2.01, 4.71), and malignant grade (OR = 3.18, 95% CI 1.09, 9.30), but not related to age, gender, and distant metastasis (DM). CONCLUSIONS: High circZFR expression was associated with unfavorable OS and clinicopathologic parameters including tumor size, clinical stage, LNM, and histology grade, implicating a promising prognostic factor in cancers.


Asunto(s)
Neoplasias , Biomarcadores de Tumor/metabolismo , Humanos , Metástasis Linfática , Neoplasias/patología , Pronóstico , Modelos de Riesgos Proporcionales , Reproducibilidad de los Resultados
18.
Small ; 17(35): e2102125, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34297478

RESUMEN

Single-atom catalysts (SACs) with specific coordination environment are expected to be efficient electrocatalysts for oxygen reduction reaction (ORR). Herein, NiN4 C10 coordination site is constructed through encapsulating Ni2+ into the cavity of ZIF-8 as a self-sacrificing precursor and anchoring it on 3D N-doped carbon frameworks. The NiN4 C10 catalyst shows excellent ORR activity and stability, with a high half-wave potential (0.938 V vs RHE), which is currently the best performances in Ni-based SACs. The remarkable performance with high ORR activity in alkaline solution is attributed to the single-atom nickel active sites with faster electron transport and suitable electronic structure. Moreover, the power density of zinc-air battery assembled by NiN4 C10 as cathode is 47.1% higher than that of the commercial Pt/C. This work not only provides a facile method to prepare extremely active Ni-based SACs, but also studies the intrinsic mechanism toward the oxygen reduction reaction under alkaline condition.

19.
Cancer Cell Int ; 21(1): 313, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34130697

RESUMEN

Osteosarcoma is a common and highly malignant bone tumor among children, adolescents and young adults. However, the underlying molecular mechanisms remain largely unexplored. LncRNAs are transcripts with no or limited protein-coding capacity in human genomes, and have been demonstrated to play crucial functions in initiation, progression, therapeutic resistance, recurrence and metastasis of tumor. Considerable studies revealed a dysregulated lncRNA expression pattern in osteosarcoma, which may act as oncogenes or suppressors to regulate osteosarcoma progression. Wnt signaling pathway is an important cascade in tumorigenesis by modulation of pleiotropic biological functions including cell proliferation, apoptosis, differentiation, stemness, genetic stability and chemoresistance. Hyperactivation or deficiency of key effectors in Wnt cascade is a common event in many osteosarcoma patients. Recently, increasing evidences have suggested that lncRNAs could interplay with component of Wnt pathway, and thereby contribute to osteosarcoma onset, progression and dissemination. In this review, we briefly summarize Wnt signaling-related lncRNAs in osteosarcoma progression, aiming to gain insights into their underlying crosstalk as well as clinical application in osteosarcoma therapeutic modalities.

20.
Exp Eye Res ; 210: 108643, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34058231

RESUMEN

Choroidal melanoma is a devastating disease that causes visual loss and a high mortality rate due to metastasis. Luteolin, a potential anticancer compound, is widely found in natural plants. The aim of this study was to evaluate the antiproliferative, antiadhesive, antimigratory and anti-invasive effects of luteolin on choroidal melanoma cells in vitro and to explore its potential mechanism. Cell counting kit-8 (CCK-8) assays, 5-ethynyl-2'-deoxyuridine (EdU) assays, Cell adhesion, migration, and invasion assays were performed to examine the inhibitory effects of luteolin on cell cell viability, proliferation, adhesion, migration and invasion capacities, respectively. Considering the correlation between Matrix metalloenzymes and tumor metastasis, Enzyme-linked immunosorbent assays (ELISAs) were used to assess matrix metalloproteases MMP-2 and MMP-9 secretion. Western blotting was performed to detect p-PI3K P85, Akt, and p-Akt protein expression. The cytoskeletal proteins vimentin were observed with cell immunofluorescence staining. Luteolin can inhibit OCM-1 cell proliferation, migration, invasion and adhesion and C918 cell proliferation, migration, and invasion through the PI3K/Akt signaling pathway. Therefore, Luteolin may have potential as a therapeutic medication for Choroidal melanoma.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias de la Coroides/tratamiento farmacológico , Luteolina/uso terapéutico , Melanoma/tratamiento farmacológico , Western Blotting , Supervivencia Celular/efectos de los fármacos , Neoplasias de la Coroides/enzimología , Neoplasias de la Coroides/patología , Ensayo de Inmunoadsorción Enzimática , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Melanoma/enzimología , Melanoma/patología , Microscopía Fluorescente , Invasividad Neoplásica/prevención & control , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas , Vimentina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA