RESUMEN
Superconductivity and charge density waves (CDWs) are competitive, yet coexisting, orders in cuprate superconductors. To understand their microscopic interdependence, a probe capable of discerning their interaction on its natural length and time scale is necessary. We use ultrafast resonant soft x-ray scattering to track the transient evolution of CDW correlations in YBa2Cu3O6+x after the quench of superconductivity by an infrared laser pulse. We observe a nonthermal response of the CDW order characterized by a near doubling of the correlation length within ≈1 picosecond of the superconducting quench. Our results are consistent with a model in which the interaction between superconductivity and CDWs manifests inhomogeneously through disruption of spatial coherence, with superconductivity playing the dominant role in stabilizing CDW topological defects, such as discommensurations.
RESUMEN
Scrap material recovery and recycling companies are producing wastewater in which common pollutants (such as COD, nutrients and suspended solids), toxic metals, polyaromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) frequently can exceed the discharge limits. Lab-scale optimisation of different possible physical-chemical treatment techniques was performed on the wastewater originating from three different companies in view of further testing at pilot-scale testing and implementation at full-scale. The lab-scale tests demonstrate that sedimentation or hydrocyclone treatment as stand-alone technique cannot be used for proper treatment of this type of wastewater. Dual bed filtration or coagulation/flocculation proved to be more promising with removal efficiencies of about 71-95% (dual bed filtration) and 61-97% (coagulation/flocculation) for the above-mentioned pollutants (metals, PAH and PCB).
Asunto(s)
Reciclaje , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua , Filtración , Floculación , Aguas ResidualesRESUMEN
We use ultrafast X-ray pulses to characterize the lattice response of SrTiO3 when driven by strong terahertz fields. We observe transient changes in the diffraction intensity with a delayed onset with respect to the driving field. Fourier analysis reveals two frequency components corresponding to the two lowest energy zone-center optical modes in SrTiO3. The lower frequency mode exhibits clear softening as the temperature is decreased while the higher frequency mode shows slight temperature dependence.
RESUMEN
Chimeric constructs of glucose transporters GLUT2 and GLUT4 were transiently expressed in COS-7 cells in order to determine regions of the proteins responsible for their differences in activity and ligand binding. Exchange of the C-terminal tail (aa 479-509) of GLUT4 failed to affect glucose transport activity assayed at 1 mM glucose or ligand binding (cytochalasin B, IAPS-forskolin). In contrast, exchange of the C-terminal half of GLUT4 (aa 222-509) for that of GLUT2 markedly reduced ligand binding (Kd of cytochalasin B binding 1.88 +/- 0.2 microM vs. 0.21 +/- 0.06 in the wild-type GLUT4), and moderately (25%) reduced glucose transport activity. These data support the conclusion that the domains determining differences in ligand binding between GLUT4 and GLUT2 are located in the C-terminal half of the glucose transporters.
Asunto(s)
Azidas/metabolismo , Colforsina/análogos & derivados , Citocalasina B/metabolismo , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas Musculares , Proteínas Recombinantes de Fusión/metabolismo , Animales , Sitios de Unión , Transporte Biológico , Células COS , Colforsina/metabolismo , Diterpenos , Técnicas de Transferencia de Gen , Transportador de Glucosa de Tipo 2 , Transportador de Glucosa de Tipo 4 , Ligandos , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Recombinantes de Fusión/genéticaRESUMEN
Six tyrosine residues (Y28, Y143, Y292, Y293, Y308, Y432(1)) which are conserved in all mammalian glucose transporters were substituted for phenylalanine by site-directed mutagenesis, and mutant glucose transporters were transiently expressed in COS-7 cells. Glucose transport activity as assessed by reconstitution of the solubilized transporters into lecithin liposomes was reduced by 70% in the mutant Y143F and appeared to be abolished in Y293F, but was not affected by substitution of Y28, Y292, Y308 and Y432. In contrast, covalent binding of the photolabel 125IAPS-forskolin was normal in all mutants. Stable expression of the mutants Y143F, Y293F, and Y292F in LTK cells yielded identical results. These data indicate that only two of the 6 conserved helical tyrosine residues, located in helices 4 and 7, are essential for full activity, but not for IAPS-forskolin binding of the GLUT4.
Asunto(s)
Azidas/metabolismo , Colforsina/análogos & derivados , Secuencia Conservada , Proteínas de Transporte de Monosacáridos/química , Proteínas Musculares , Tirosina/química , Marcadores de Afinidad , Secuencia de Aminoácidos , Animales , Línea Celular , Colforsina/metabolismo , Diterpenos , Transportador de Glucosa de Tipo 4 , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos/metabolismoRESUMEN
Two arginine residues (RR333/334) in the conserved GRR motif located in the endofacial loop between helix 8 and 9 of the glucose transporter GLUT4 were substituted for leucine and alanine, respectively. Reconstituted glucose transport activity of the construct (GLUT4-RR333/4LA) expressed in COS-7 or LM(TK-) cells was less than 10% of that of the wild-type GLUT4. In contrast, binding of the inhibitory ligand cytochalasin B and glucose-inhibitable photolabeling with IAPS-forskolin were not significantly affected. Exchange of a histidine residue (H337Q) previously believed to be involved in the binding of inhibitory ligands failed to affect any of the investigated parameters. These data suggest that positive charges in the GRR motif at the cytoplasmic surface of the transporter participate in the conformational changes of the carrier protein during the process of facilitated diffusion.
Asunto(s)
Proteínas de Transporte de Monosacáridos/fisiología , Proteínas Musculares , Animales , Arginina , Transporte Biológico , Células Cultivadas , Colforsina/metabolismo , Citocalasina B/metabolismo , Transportador de Glucosa de Tipo 4 , Proteínas de Transporte de Monosacáridos/química , Mutagénesis Sitio-Dirigida , Conformación Proteica , Relación Estructura-Actividad , TransfecciónRESUMEN
The tryptophan residues 388 and 412 in the glucose transporter GLUT1 were altered to leucine (L) by site-directed mutagenesis and were transiently expressed in COS-7 cells. As assessed by immunoblotting, comparable numbers of glucose transporters were present in plasma membranes from cells transfected with wild-type GLUT1, GLUT1-L388 or GLUT1-L412. Transfection of the wild-type GLUT1 gave rise to a 3-fold increase in the reconstituted glucose transport activity recovered from plasma membranes. In contrast, transfection of GLUT1-L412 failed to increase the reconstituted transport activity, whereas transfection of GLUT1-L388 produced only a 70% increase. Photolabelling of GLUT1-L412 with 3-[125I]iodo-4-azidophenethylamido-7-O-succinyldeacetyl (125IAPS)-forskolin was not different from that of the wild-type GLUT1, whereas the GLUT1-L388 incorporated 70% less photolabel than did the wild-type GLUT1. These data suggest a dissociation of the binding sites of forskolin and glucose in GLUT1. Whereas both tryptophan-388 and tryptophan-412 appear indispensable for the function of the transporter, only tryptophan-388 is involved in the binding of the inhibitory ligand forskolin.