RESUMEN
The extremely dynamic life cycle of gap junction connections requires highly efficient intracellular trafficking system especially designed for gap junction proteins, but the underlying mechanisms are largely unknown. Here, we identified that the COPII-associated proteins ERGIC2 (ER-Golgi intermediate compartment) and ERGIC3 are specifically required for the efficient intracellular transport of gap junction proteins in both Caenorhabditis elegans and mice. In the absence of Ergic2 or Ergic3, gap junction proteins accumulate in the ER and Golgi apparatus and the size of endogenous gap junction plaques is reduced. Knocking out the Ergic2 or Ergic3 in mice results in heart enlargement and cardiac malfunction accompanied by reduced number and size of connexin 43 (Cx43) gap junctions. Invertebrates' gap junction protein innexins share no sequence similarity with vertebrates' connexins. However, ERGIC2 and ERGIC3 could bind to gap junction proteins in both worms and mice. Characterization of the highly specialized roles of ERGIC2 and ERGIC3 in metazoans reveals how the early secretory pathway could be adapted to facilitate the efficient transport for gap junction proteins in vivo.
Asunto(s)
Conexinas , Aparato de Golgi , Animales , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Aparato de Golgi/metabolismo , Ratones , Vías Secretoras , Proteínas de Transporte VesicularRESUMEN
The construction of stable and efficient nanocomposites with low addition and light weight has always been the goal pursued in the field of electromagnetic wave (EMW) absorption. In this study, the Co@CNTs nanocomposites with Co nanoparticles (13 nm) nanoconfined in the carbon nanotube (CNT) are successfully synthesized by a simple hydrothermal method and phenolic assisted pyrolysis method. The degree of graphitization of CNTs and the microstructure of Co nanoparticles can be effectively regulated by controlling the calcination temperature. The sample calcined at 700 °C can obtain excellent absorption performance at a low filling capacity of 10 wt.%: the minimum reflection loss (RL) is -41.2 dB and the effective absorption bandwidth (EAB) reaches a maximum width of 14.2 GHz. When the sample thickness is only 2.2 mm, the EAB of <-20 dB reaches 8.3 GHz, which is the maximum EAB of most current Co-based absorbers. In particular, the polarization and ferromagnetic coupling behaviors are elucidated in depth with the aid of electromagnetic field simulations using the High-Frequency Structure Simulator (HFSS). This work provides a new nanoconfinement strategy for constructing the Co@CNTs nanocomposites as lightweight and ultra-broadband absorbing materials for EMW protection and EMW pollution control.
RESUMEN
The simple and low-cost construction of a 3D network structure is an ideal way to prepare high-performance electromagnetic wave (EMW) absorption materials. Herein, a series of carbon skeleton/carbon nanotubes/Ni3ZnC0.7 composites (CS/CNTs/Ni3ZnC0.7) are successfully prepared by in situ growth of Ni3ZnC0.7 and CNTs on 3D melamine sponge carbon. With the increase of precursor, Ni3ZnC0.7 nanoparticles nucleate and catalyze the generation of CNTs on the surface of the carbon skeleton. The minimum reflection loss (RL) value of the S60min composite (loading time of 60 min) reaches -86.6 dB at 1.6 mm and effective absorption bandwidth (EAB, RL≤-10 dB) is up to 9.3 GHz (8.7-18 GHz). The 3D network sponge carbon with layered micro/nanostructure and hollow skeleton promotes multiple reflection and absorption mechanisms of incident EMW. The N-doping and defects can be equivalent to an electric dipole, providing dipole polarization to increase dielectric relaxation. The uniform Ni3ZnC0.7 nanoparticles and CNTs play a key role in dissipating electromagnetic energy, blocking heat transfer, and enhancing the mechanical properties of the skeleton. Fortunately, the composite displays a quite low thermal conductivity of 0.09075 W m·K-1 and good flexibility, which can provide insulation and quickly recover to its original state after being stressed.
RESUMEN
The design of novel agrochemicals starting from bioactive natural products is one of the most effective ways in the discovery and development of new pesticidal agents. In this paper, a series of novel butenolide-containing methylxanthine derivatives (Ia-Ir) were designed based on natural methylxanthine caffeine and stemofoline, and the derivatized insecticide flupyradifurone of the latter. The structures of the synthesized compounds were confirmed via 1H-NMR, 13C NMR, HRMS and X-ray single crystal diffraction analyses. The biological activities of the compounds were evaluated against a variety of agricultural pests including oriental armyworm, bean aphid, diamondback moth, fall armyworm, cotton bollworm, and corn borer; the results indicated that some of them have favorable insecticidal potentials, particularly toward diamondback moth. Among others, Ic and Iq against diamondback moth possessed LC50 values of 6.187â mg â L-1 and 3.269â mg â L-1, respectively, - 2.5- and 4.8-fold of relative insecticidal activity respectively to that of flupyradifurone (LC50=15.743â mg â L-1). Additionally, both the DFT theoretical calculation and molecular docking with acetylcholine binding protein were conducted for the highly bioactive compoundâ (Ic). Ic and Iq derived from the integration of caffeine (natural methylxanthine) and butenolide motifs can serve as novel leading insecticidal compounds for further optimization.
Asunto(s)
4-Butirolactona , Teoría Funcional de la Densidad , Insecticidas , Simulación del Acoplamiento Molecular , Mariposas Nocturnas , Insecticidas/química , Insecticidas/farmacología , Insecticidas/síntesis química , Animales , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/farmacología , 4-Butirolactona/síntesis química , Mariposas Nocturnas/efectos de los fármacos , Cristalografía por Rayos X , Estructura Molecular , Xantinas/farmacología , Xantinas/química , Xantinas/síntesis química , Áfidos/efectos de los fármacos , Relación Estructura-ActividadRESUMEN
Organic small molecules with processing feasibility, structural diversity, and fine-tuned properties have the potential applications in solar vapor generation. However, the common defects of narrow solar absorption, low photothermal conversion efficiency, and photobleaching result in limited materials available and unsatisfactory evaporation performance. Herein, the perylene diimide (PDI) derivatives are exploited as stable sunlight absorbers for solar vapor generation. Particularly, the N,N'-bis(3,4,5-trimethoxyphenyl)-3,4,9,10-perylenetetracarboxylic diimide (PDI-DTMA) is well-designed with donor-acceptor-donor configuration based on plane rigid PDI core. The efficient photothermal conversion is enabled through strong intermolecular π-π stacking and intramolecular charge transfer, as revealed by experimental demonstration and theoretical calculation. The PDI-DTMA with a narrow band gap of 1.17 eV exhibits expanded absorption spectrum and enhanced nonradiative transition capability. The 3D hybrid hydrogels (PPHs) combining PDI-DTMA and polyvinyl alcohol are constructed. With the synergistic effect of solar-to-heat conversion, thermal localization management, water activation, and unobstructed water transmission of PPHs, the high water evaporation rates can reach 3.61-10.07 kg m-2 h-1 under one sun. The hydrogels also possess great potential in seawater desalination and sewage treatment. Overall, this work provides valuable insights into the design of photothermal organic small molecules and demonstrates their potentials in solar water evaporation.
RESUMEN
Despite high remission rates following chimeric antigen receptor T cell (CAR-T) cell therapy in B-cell acute lymphoblastic leukemia (B-ALL), relapse due to loss of the targeted antigen is increasingly recognized as a mechanism of immune escape. We hypothesized that simultaneous targeting of CD19 and CD22 may improve the CAR-T effect. The in vitro and in vivo leukemia model was established, and the anti-tumor effects of BiCAR-T, CD19 CAR-T, CD22 CAR-T, and LoopCAR6 cells were observed. We found that the BiCAR-T cells showed significant cytotoxicity in vitro and in vivo. The CD19/CD22 bivalent CAR provides an opportunity to test whether simultaneous targeting may reduce the risk of antigen loss.
Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva/métodos , Leucemia Experimental/terapia , Receptores Quiméricos de Antígenos/inmunología , Lectina 2 Similar a Ig de Unión al Ácido Siálico/inmunología , Animales , Antígenos CD19/genética , Femenino , Humanos , Células K562 , Lentivirus/genética , Ratones , Lectina 2 Similar a Ig de Unión al Ácido Siálico/genéticaRESUMEN
To discover new agrochemicals with prominent pesticidal properties, a series of novel ß-naphthol derivatives containing benzothiazolylamino and various heteroaryl groups (8a-q) were efficiently synthesised via Betti reaction. The bioassay results showed that most of the synthesised compounds exhibited favourable insecticidal potentials, particularly towards oriental armyworm (50-100% at 200 mg·L-1) and diamondback moth (50-95% at 10 mg·L-1). Compounds 8 b, 8f, 8 g, 8j, 8k, 8n, and 8o possessed LC50 values of 0.0988-5.8864 mg·L-1 against diamondback moth. Compounds 8i, 8 l, and 8 m also displayed lethality rates of 30-90% against spider mite at the concentration of 100 mg·L-1. Overall, some compounds could be considered as new insecticidal/acaricidal leading structures for further investigation. The calcium imaging experiments revealed that 8 h, 8i, and viii could activate the release of calcium ions in insect (M. separata) central neurons at a higher concentration (50 mg·L-1). The SAR analysis provided valuable information for further structural modifications.
Asunto(s)
Benzotiazoles/farmacología , Mariposas Nocturnas/efectos de los fármacos , Naftalenos/farmacología , Plaguicidas/farmacología , Animales , Benzotiazoles/síntesis química , Benzotiazoles/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Naftalenos/síntesis química , Naftalenos/química , Plaguicidas/síntesis química , Plaguicidas/química , Relación Estructura-ActividadRESUMEN
Keto-substituted 1,2-cyclohexadienes were generated by base-mediated (KOt-Bu) elimination, and found to dimerize via an unprecedented formal hetero-Diels-Alder process, followed by hydration. These highly reactive cyclic allene intermediates were also trapped in Diels-Alder reactions by furan, 2,5-dimethylfuran, or diphenylisobenzofuran to afford cycloadducts with high regio- and diastereoselectivity, and could also be intercepted in a hetero-Diels-Alder process with enamine dienophiles. Endo/exo stereochemistry was unambiguously determined via X-ray crystallography in the case of nitrile-substituted 1,2-cyclohexadiene. DFT calculations indicate that the novel hetero-Diels-Alder processes observed with these allenes occur via a concerted asynchronous cycloaddition mechanism.
RESUMEN
Referring to the structural information of the "hit" compound A from the reported pharmacophore-based virtual screening, a series of novel thienylpyridyl- and thioether/sulfoxide/sulfone-containing acetamide derivatives have been designed and synthesized. The structures of new compounds were confirmed by 1H NMR, 13C NMR and HRMS. The single-crystal structure of A was firstly reported. All the new synthesized compounds were evaluated for insecticidal activities on Mythimna separata Walker and Plutella xylostella L. Through a step-by-step structural optimization, the high insecticidal agents, especially towards Plutella xylostella L., have been found, and thienylpyridyl- and sulfone/thioether-containing acetamides Iq, Io, Ib and A, which are comparable with the control insecticides cartap, triflumuron and chlorantraniliprole in the present study, can be used as novel lead structures for new insecticides innovation research. In addition, some of the compounds, e.g., A, Ih, Id, Io and Iq, also exhibited favourable fungicidal activities against Physalospora piricola, Rhizoctonia cerealis and Sclerotinia sclerotiorum and would provide useful guidance for the design and development of new fungicides.
Asunto(s)
Acetamidas , Plaguicidas , Animales , Ascomicetos , Basidiomycota , Insecticidas/química , Mariposas Nocturnas/efectos de los fármacos , Relación Estructura-Actividad , SulfurosRESUMEN
Histone deacetylases (HDACs) have proven to be promising targets for the development of anti-cancer drugs. In this study, we reported a series of novel chalcone based tubulin and HDAC dual-targeting inhibitors. Three compounds inhibited the activities of HDAC and tubulin polymerization simultaneously and displayed anti-proliferative activities toward eleven human tumor cell lines. Compound 8a remarkably induced growth inhibition, apoptosis and G2/M phase arrest of A549 tumor cells. Finally, the inhibitory activities of 8a against HDAC6 and tubulin were rationalized by molecular docking studies.
Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Tubulina (Proteína)/metabolismo , Células A549 , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-ActividadRESUMEN
A series of new 3-substitutedphenyl-4-substitutedbenzylideneamino-1,2,4-triazole Mannich bases and bis-Mannich bases were synthesized through Mannich reaction with high yields. Their structures were confirmed by means of IR, 1H NMR, 13C NMR and elemental analysis. The preliminary bioassay indicated that compounds 7g, 7h and 7l exhibited potent in vitro inhibitory activities against ketol-acid reductoisomerase (KARI) with Ki value of (0.38⯱â¯0.25), (6.59⯱â¯2.75) and (8.46⯱â¯3.99)⯵mol/L, respectively, and were comparable with IpOHA. They could be new KARI inhibitors for follow-up research. Some of the title compounds also exhibited obvious herbicidal activities against Echinochloa crusgalli and remarkable in vitro fungicidal activities against Physalospora piricola and Rhizoctonia cerealis. The SAR of the compounds were analyzed, in which the molecular docking revealed the binding mode of 7g with the KARI, and the 3D-QSAR results provided useful information for guiding further optimization of this kind of structures to discover new fungicidal agents towards Rhizoctonia cerealis.
Asunto(s)
Antifúngicos/síntesis química , Herbicidas/síntesis química , Cetoácido Reductoisomerasa/antagonistas & inhibidores , Bases de Mannich/química , Triazoles/química , Antifúngicos/química , Antifúngicos/farmacología , Sitios de Unión , Echinochloa/efectos de los fármacos , Echinochloa/enzimología , Hongos/efectos de los fármacos , Hongos/enzimología , Herbicidas/química , Herbicidas/farmacología , Cetoácido Reductoisomerasa/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Relación Estructura-Actividad CuantitativaRESUMEN
A series of novel 5-substituted-1,3,4-oxadiazole Mannich bases and bis-Mannich bases have been conveniently synthesized in good yields. Their structures were characterized by IR, (1)H NMR, (13)C NMR and elemental analysis. The preliminary bioassay results indicated that some of the compounds showed promising in vitro fungicidal activities towards several test plant fungi; some of them exhibited significant herbicidal activities against Brassica campestris and excellent in vitro inhibitory activities against rice ketol-acid reductoisomerase (KARI). Among 14 novel compounds, 8c, 8d and 8m showed potent KARI inhibitory activities with Ki value of (0.96±0.42), (3.86±0.49) and (3.10±0.71) µmol/L, respectively, and were comparable with IpOHA. These compounds could be novel KARI inhibitors for further investigation. The density functional theory (DFT) calculations and molecular docking were carried out to study the structure-activity relationship (SAR) of the active inhibitors in this Letter.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Cetoácido Reductoisomerasa/antagonistas & inhibidores , Bases de Mannich/síntesis química , Bases de Mannich/farmacología , Oxadiazoles/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Bases de Mannich/química , Estructura Molecular , Espectroscopía de Protones por Resonancia Magnética , Espectrofotometría Infrarroja , Relación Estructura-ActividadRESUMEN
A series of novel 2,3-dihydro-1,3,4-oxadiazoles containing N-pyridylpyrazole carboxamides moieties were obtained by applying a new synthetic route. Their insecticidal tests against oriental armyworm (Mythimna separata) and diamondback moth (Plutella xylostella) indicated that most of the compounds showed moderate to excellent activities at the testing concentrations. In particular, compound 6a showed 40% larvicidal activities against oriental armyworm at 1mg/L, while 7a against diamondback was 100% at 0.01mg/L. Calcium imaging results demonstrated that 6a, 6d and 7a stimulated a transient elevation in [Ca(2+)]i in the absence of external calcium after the central neurons dye loading with fluo-3 AM, implying that these novel compounds were potential activators of the ligand-gated calcium channel on the endoplasmic reticulum.
Asunto(s)
Oxadiazoles/síntesis química , Oxadiazoles/farmacología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Diseño de Fármacos , Insecticidas/síntesis química , Insecticidas/farmacología , Mariposas Nocturnas/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/química , Relación Estructura-ActividadRESUMEN
To tackle the serious challenge of insect resistance and stricter environmental regulations, innovating a new eco-friendly insecticide is urgently required. A series of new phthalamides containing sulfiliminyl and sulfoximinyl moieties were designed and synthesized. In total, 30 new structures were characterized by 1H NMR spectra and HRMS. The bioassay results indicated that some title compounds exhibited excellent insecticidal activities against oriental armyworm (Pseudaletia separata Walker) and diamondback moth (Plutella xylostella (L.)). 4a showed the same larvicidal level as that of commercial flubendiamide as a control. 7a and 9a exhibited outstanding activity against diamondback moth. The LC50 values of 7a and 9a were 8.33 × 10(−8) and 2.34 × 10(−8) mg L(−1), respectively, lower than that of flubendiamide (1.25 × 10(−7) mg L(−1)). The effects of 4a, 7a and 9a on intracellular calcium of neurons from the beet armyworm (Spodoptera exigua) indicated that these title compounds activate the receptor-operated calcium channel. The calcium ions efflux from the calcium store on endoplasmic reticulum (ER) when treated with novel compounds. The results of CoMFA calculation showed that N-cyanosulfilimines and N-trifluoroacetylsulfoximines might be of importance to the larvicidal activity. The present work demonstrated that structures containing sulfiliminyl and sulfoximinyl moieties can be considered as lead compounds for the development of new insect ryanodine receptor modulators.
Asunto(s)
Amidas/farmacología , Proteínas de Insectos/antagonistas & inhibidores , Insecticidas/farmacología , Mariposas Nocturnas/efectos de los fármacos , Ácidos Ftálicos/farmacología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Amidas/síntesis química , Animales , Benzamidas/farmacología , Calcio/metabolismo , Diseño de Fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Proteínas de Insectos/metabolismo , Insecticidas/síntesis química , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/metabolismo , Estructura Molecular , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ácidos Ftálicos/síntesis química , Relación Estructura-Actividad , Sulfonas/farmacologíaRESUMEN
To cope with developing pest resistance and ecological problems associated with conventional insecticides and to search for potent insecticides targeting at ryanodine receptor (RyR), a series of novel anthranilic diamides containing N-substitued nitrophenylpyrazole were designed and synthesized. The insecticidal activities of target compounds against oriental armyworm (Mythimna separata) and diamondback moth (Plutella xylostella) were evaluated in our greenhouse by bio-assay tests and the relative structure-activity relationships were briefly discussed. Most compounds exhibited moderate to high activities, in which G7 and K5 showed high activity against oriental armyworm and K2 and K4 against diamondback moth even better than the control-chlorantraniliprole. The calcium imaging technique was used to investigate the effects of several typical title compounds on the [Ca(2+)](i), especially the effects of G7 on the intracellular calcium ion concentration ([Ca(2+)](i)) in neurons, which indicated that some title compounds were potent activators of the RyR.
Asunto(s)
Diamida/síntesis química , Pirazoles/síntesis química , ortoaminobenzoatos/síntesis química , Diamida/farmacología , Diseño de Fármacos , Estructura Molecular , Pirazoles/farmacología , Relación Estructura-Actividad , ortoaminobenzoatos/farmacologíaRESUMEN
Ectopic thyroid arises from abnormal development of thyroid primordial tissues as it migrates to the lower interstitium during the embryonic period, which can occur at various locations during the descent process. However, ectopic thyroid in the subdiaphragmatic area is extremely rare. In this case, we report a case of ectopic thyroid located in the hepatoduodenal ligament. The 60-year-old female patient was admitted to hospital with gallbladder stones and cholecystitis. Preoperative imaging showed a mass in the hepatoduodenal ligament. As the patient declined a needle biopsy of the mass, the nature of the mass remained unclear prior to surgery. The patient subsequently underwent laparoscopic cholecystectomy and exploratory resection of the mass. The histopathology of the resected mass showed the characteristics of ectopic thyroid, and immunohistochemical staining revealed positive expression of thyroid transcription factor-1 and thyroglobulin. The diagnosis of ectopic thyroid was established. Upon confirming the diagnosis, comprehensive neck examination revealed the presence of a normally functioning thyroid gland. Throughout the four-year follow-up period, the patient's thyroid ultrasonography and thyroid function tests indicated no abnormalities. Ectopic thyroid in the hepatoduodenal ligament and surrounding areas is an extremely rare clinical abnormality, achieving a clear diagnosis before initiating treatment offers diagnostic and treatment insights and clues for clinicians when differentiating masses within this region.
RESUMEN
Ion beam-assisted deposition (IBAD) has been proposed as a promising texturing technology that uses the film epitaxy method to obtain biaxial texture on a non-textured metal or compound substrate. Magnesium oxide (MgO) is the most well explored texturing material. In order to obtain the optimal biaxial texture, the actual thickness of the IBAD-MgO film must be controlled within 12nm. Due to the bombardment of ion beams, IBAD-MgO has large lattice deformation, poor texture, and many defects in the films. In this work, the solution deposition planarization (SDP) method was used to deposit oxide amorphous Y2O3 films on the surface of Hastelloy C276 tapes instead of the electrochemical polishing, sputtering-Al2O3 and sputtering-Y2O3 in the commercialized buffer layer. An additional homogeneous epitaxy MgO (epi-MgO) layer, which was used to improve the biaxial texture in the IBAD-MgO layer, was deposited on the IBAD-MgO layer by electron-beam evaporation. The effects of growth temperature, film thickness, deposition rate, and oxygen pressure on the texture and morphology of the epi-MgO film were systematically studied. The best full width at half maximum (FWHM) values were 2.2° for the out-of-plane texture and 4.8° for the in-plane texture for epi-MgO films, respectively. Subsequently, the LaMnO3 cap layer and YBa2Cu3O7-x (YBCO) functional layer were deposited on the epi-MgO layer to test the quality of the MgO layer. Finally, the critical current density of the YBCO films was 6 MA/cm2 (77 K, 500 nm, self-field), indicating that this research provides a high-quality MgO substrate for the YBCO layer.
RESUMEN
On the basis of the structures of natural methylxanthines and chalcone, a series of novel chalcone analogues containing a methylxanthine moiety, Ia-Ig, and their N-acyl pyrazoline derivatives IIa-IIz and IIaa-IIaf were synthesized and identified through melting points, 1H NMR, 13C NMR, and HRMS. The single crystal of compound IId was obtained, which further illustrated the structural characteristics of the methylxanthine-acylpyrazoline compounds. The biological tests showed that some of them displayed favorable insecticidal activities toward Plutella xylostella L. and were superior to the natural methylxanthine compound caffeine while being comparable with the insecticide triflumuron (e.g., compound Ic: LC50 = 16.8508 mg/L, IIf: LC50 = 1.5721 mg/L, against P. xylostella). Of these compounds, Ic, IIf, and IIu could serve as novel insecticidal leading structures for further study. Some of the compounds showed good fungicidal activities (e.g., compound Ig: EC50 = 14.74 µg/mL, against Rhizoctonia cerealis; IIf: EC50 = 7.06 µg/mL, against Physalospora piricola; IIac: EC50 = 5.37 and 8.19 µg/mL, against Phytophthora capsici and Sclerotinia sclerotiorum, respectively); Ic, Ig, IIa, IIf, IIr, IIs, IIv, IIac, and IIaf could be novel fungicidal leading compounds for further exploration. Furthermore, most of the tested compounds exhibited apparent herbicidal activities against Brassica campestris at a concentration of 100 µg/mL; among others, compound IIa was the best one both toward Brassica campestris and Echinochloa crusgalli and deserves further investigation. The structure-activity relationships of these compounds were also summarized and discussed in detail. The contrast experiment results of compounds C-1 and C-2 showed a positive effect on the biological activity enhancement from the combination of the methylxanthine moiety with the N-dichloroacetyl phenylpyrazoline skeleton. In addition, two 3D-QSAR models with predictive capability were constructed based on the insecticidal and fungicidal activities to afford deep insight into the bioactivity profiles of these compounds. This research provides useful guidance and reference for the discovery and development of novel xanthine natural product-based pesticides.
Asunto(s)
Chalconas , Fungicidas Industriales , Insecticidas , Fungicidas Industriales/química , Xantinas , Relación Estructura-Actividad , Insecticidas/química , Relación Estructura-Actividad CuantitativaRESUMEN
Two-dimensional liquid chromatography (2D-LC) has gained increased attention because of its high peak capacity for separating complex samples. However, preparative 2D-LC aimed at isolating compounds is significantly different compared with one-dimensional liquid chromatography (1D-LC) in terms of method development and system configuration; thus, it is less developed than its analytical counterpart. The use of 2D-LC in large-scale product preparation has rarely been reported. Hence, a preparative 2D-LC system was developed in this study. The system was composed of one set of preparative LC modules as a separation system, with a dilution pump, switch valves, and trap column array as the interface, to enable the simultaneous isolation of several compounds. Tobacco was used as a sample, and the developed system was applied to isolate nicotine, chlorogenic acid, rutin, and solanesol. The chromatographic conditions were developed by investigating the trapping efficiency of different types of trap column packings, and chromatographic behaviors under different overload conditions. The four compounds were isolated in one 2D-LC run with high purity. The developed system features low cost because it employs medium-pressure isolation, excellent automation owing to its use of an online column switch, high stability, and capability for large-scale production. The isolation of chemicals from tobacco leaves as pharmaceutical raw materials could aid in the development of the tobacco industry and promote the local agricultural economy.
Asunto(s)
Ácido Clorogénico , Nicotiana , Cromatografía Liquida , Nicotina , Hojas de la PlantaRESUMEN
With the rapidly development of radar detection technology and the increasingly complex application environment in military field and electromagnetic pollution surrounded by electron devices, increasingly demand is needed for electromagnetic wave absorbent materials with high absorption efficiency and thermal stability. Herein, a novel Ni3ZnC0.7/Ni loaded puffed-rice derived carbon (RNZC) composites are successfully prepared by vacuum filtration of metal-organic frameworks gel precursor together with layered porous-structure carbon and followed by calcination. The Ni3ZnC0.7 particles uniformly decorate on the surface and pores of puffed-rice derived carbon. The puffed-rice derived carbon@Ni3ZnC0.7/Ni-400 mg (RNZC-4) sample displayed the best electromagnetic wave absorption (EMA) performances among the samples with different Ni3ZnC0.7 loading. The minimum reflection loss (RLmin) of the RNZC-4 composite reaches -39.9 dB at 8.6 GHz, while widest effective absorption bandwidth (EAB) of RNZC-4 for RL < -10 dB can reach 9.9 GHz (8.1-18 GHz, 1.49 mm). High porosity and large specific surface area promote the multiple reflection-absorption effect of the incident electromagnetic waves. The Ni3ZnC0.7 nanoparticles provide a large number of interfaces and dipole factors. Analysis reveals that the RNZC-4 remained general stability under 400 °C with formation of a small amount of NiO and ZnO phases. Surprisingly, at such high temperature, the absorbing properties of the material are improved rather than decreased. Obviously, the material still maintains good electromagnetic wave performance at high temperature, and implies that the absorber shows good performance stability. Therefore, our preparations exhibit potential applications under extreme conditions and a new insight for the design and application of bimetallic carbides.