Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Biol Chem ; 299(12): 105481, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38041932

RESUMEN

Singlet oxygen (1O2) has a very short half-life of 10-5 s; however, it is a strong oxidant that causes growth arrest and necrotic lesions on plants. Its signaling pathway remains largely unknown. The Arabidopsis flu (fluorescent) mutant accumulates a high level of 1O2 and shows drastic changes in nuclear gene expression. Only two plastid proteins, EX1 (executer 1) and EX2 (executer 2), have been identified in the singlet oxygen signaling. Here, we found that the transcription factor abscisic acid insensitive 4 (ABI4) binds the promoters of genes responsive to 1O2-signals. Inactivation of the ABI4 protein in the flu/abi4 double mutant was sufficient to compromise the changes of almost all 1O2-responsive-genes and rescued the lethal phenotype of flu grown under light/dark cycles, similar to the flu/ex1/ex2 triple mutant. In addition to cell death, we reported for the first time that 1O2 also induces cell wall thickening and stomatal development defect. Contrastingly, no apparent growth arrest was observed for the flu mutant under normal light/dim light cycles, but the cell wall thickening (doubled) and stomatal density reduction (by two-thirds) still occurred. These results offer a new idea for breeding stress tolerant plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Oxígeno Singlete/metabolismo , Transcriptoma , Estomas de Plantas/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3629-3636, 2022 Jul.
Artículo en Zh | MEDLINE | ID: mdl-35850817

RESUMEN

To identify the pharmacodynamic material basis of root bark of Caesalpinia decapetala extract and clarify the dynamic changes and distribution characteristics of the compounds in vivo.UPLC-MS/MS was used for simultaneous determination of 3-deoxysappanchalcone, isoliquiritigenin, protosappanin B, and protosappanin B-10-O-ß-D-glucoside in plasma, heart, liver, spleen, lung, kidney, stomach and duodenum of rats, to further study the pharmacokinetics and tissue distribution of root bark of C.decapetala extract in rats.Statistical analysis of obtained data demonstrated that the established analytical methods of the four components in biological matrix met the requirements of biological sample determination.The pharmacokinetic parameters showed that the t_(1/2 z), T_(max), C_(max), AUC_(0-t), MRT_(0-t), and CL_(z/F) of each component were 4.57-13.47 h, 0.22-0.51 h, 27.60-6 418.38 µg·L~(-1), 112.45-11 824.25 h·µg·L~(-1), 3.89-9.01 h, and 9.85-96.87 L·h~(-1)·kg~(-1), respectively.The results of tissue distribution revealed that at different time points, the components were widely but unevenly distributed in the body.Specifically, they were more distributed in the stomach and duodenum, followed by liver, spleen, lung, and kidney, and the least distribution was observed in the heart.


Asunto(s)
Caesalpinia , Medicamentos Herbarios Chinos , Animales , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Medicamentos Herbarios Chinos/análisis , Corteza de la Planta/química , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem/métodos , Distribución Tisular
3.
Ecotoxicol Environ Saf ; 207: 111297, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32949932

RESUMEN

The metal tolerance mechanism of plants is of great importance to explore the plant-based clean-up of environmental substrata contaminated by heavy metals. Indoor experiment of tobacco (Nicotiana tabacum L.) seedlings growing hydroponically in nutrient solution containing 0, 0.1, 0.5, 2.0, and 4.0 mg L-1 V was conducted. The results indicated that plant overall growth performance was significantly affected at ≥ 2.0 mg L-1 V. Oxidative stress degree as indicated by foliar O2-· and H2O2 content intensified markedly at ≥ 0.5 mg L-1 V treatments. In response, the plant activated its enzyme and non-enzyme protecting mechanism to cope with oxidative stress inflicted by vanadium. The activities of antioxidant enzymes, including SOD, POD, CAT, APX, and the concentration of non-enzyme antioxidants, e.g., AsA and GSH were all conspicuously (p < 0.5 or p < 0.1) enhanced at ≥ 0.5 mg L-1 V treatments. Vanadium accumulated in leaves, stems, and roots increased with increasing vanadium level. The majority of the absorbed vanadium retained in plant root, and minor portions were transferred to aerial parts. Vanadium concentration in plant tissues ordered as root ˃ stem ˃ leaf. Translocation factors (TF) in vanadium-treated tobaccos (TF « 1) were significantly lower than that of control (TF ˃ 1). In conclusion, although vanadium at ≥ 2.0 mg L-1 inhibited plant growth, tobacco exhibited a relatively good vanadium tolerance through self-adaptive regulation and has the potential as a phytostabilizer in decontaminating the environment contaminated by vanadium.


Asunto(s)
Bioacumulación , Nicotiana/crecimiento & desarrollo , Contaminantes del Suelo/metabolismo , Vanadio/metabolismo , Antioxidantes/metabolismo , Biodegradación Ambiental , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Contaminantes del Suelo/toxicidad , Nicotiana/efectos de los fármacos , Nicotiana/metabolismo , Vanadio/toxicidad
4.
Biochem Biophys Res Commun ; 532(4): 633-639, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32907713

RESUMEN

Nitrate reductase (NR) is one of the key enzymes for plant nitrogen assimilation and root architecture remodeling. However, crosstalk between NR-mediated signaling and auxin-mediated root development in nitrogen-status responses has not been investigated in details before. In this study, root phenotype and auxin distribution in nia1/nia2 (nitrate reductase) double mutant and chl1-5 (nitrate transporter NRT1.1) mutant under different nitrogen availabilities were compared. The nia1/nia2 mutant showed very low expression levels of auxin biosynthetic/signaling genes and was insensitive to nitrogen changes. While the chl1-5 mutant showed a high NR activity with a high level of auxin in the meristematic zone and a weaker response to nitrogen changes, when compared with the wild-type plants. We firstly found that NR activity was roughly positive-correlated with the root auxin level, and there is a crosstalk between nitrate signaling and auxin signaling. The putative signaling pathways downstream of NR have been discussed.


Asunto(s)
Arabidopsis/enzimología , Ácidos Indolacéticos/metabolismo , Nitrato-Reductasa/metabolismo , Nitrógeno/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Nitrato-Reductasa/genética , Nitrato-Reductasa/fisiología , Raíces de Plantas/anatomía & histología , Raíces de Plantas/enzimología , Raíces de Plantas/metabolismo
5.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33050099

RESUMEN

Nitrogen (N), phosphorus (P), and potassium (K) are three essential macro-elements for plant growth and development. Used to improve yield in agricultural production, the excessive use of chemical fertilizers often leads to increased production costs and ecological environmental pollution. Vitamins C and E are antioxidants that play an important role in alleviating abiotic stress. However, there are few studies on alleviating oxidative stress caused by macro-element deficiency. Here, we used Arabidopsis vitamin E synthesis-deficient mutant vte4 and vitamin C synthesis-deficient mutant vtc1 on which exogenous vitamin E and vitamin C, respectively, were applied at the bolting stage. In the deficiency of macro-elements, the Arabidopsis chlorophyll content decreased, malondialdehyde (MDA) content and relative electric conductivity increased, and reactive oxygen species (ROS) accumulated. The mutants vtc1 and vte4 are more severely stressed than the wild-type plants. Adding exogenous vitamin E was found to better alleviate stress than adding vitamin C. Vitamin C barely affected and vitamin E significantly inhibited the synthesis of ethylene (ETH) and jasmonic acid (JA) genes, thereby reducing the accumulation of ETH and JA that alleviated the senescence caused by macro-element deficiency at the later stage of bolting in Arabidopsis. A deficiency of macro-elements also reduced the yield and germination rate of the seeds, which were more apparent in vtc1 and vte4, and adding exogenous vitamin C and vitamin E, respectively, could restore them. This study reported, for the first time, that vitamin E is better than vitamin C in delaying seedling senescence caused by macro-element deficiency in Arabidopsis.


Asunto(s)
Antioxidantes/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Ácido Ascórbico/farmacología , Resistencia a la Enfermedad/efectos de los fármacos , Plantones/efectos de los fármacos , Vitamina E/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Ciclopentanos/antagonistas & inhibidores , Ciclopentanos/metabolismo , Etilenos/antagonistas & inhibidores , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Oxilipinas/antagonistas & inhibidores , Oxilipinas/metabolismo , Enfermedades de las Plantas/prevención & control , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantones/genética , Plantones/metabolismo , Semillas/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
6.
Planta ; 250(4): 1073-1088, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31165231

RESUMEN

MAIN CONCLUSION: The 5-leaf-stage rape seedlings were more insensitive to Pi starvation than that of the 3-leaf-stage plants, which may be attributed to the higher expression levels of ethylene signaling and sugar-metabolism genes in more mature seedlings. Traditional suppression subtractive hybridization (SSH) and RNA-Seq usually screen out thousands of differentially expressed genes. However, identification of the most important regulators has not been performed to date. Here, we employed two methods, namely, a two-round SSH and two-factor transcriptome analysis derived from the two-factor ANOVA that is commonly used in the statistics, to identify development-associated inorganic phosphate (Pi) starvation-induced genes in Brassica napus. Several of these genes are related to ethylene signaling (such as EIN3, ACO3, ACS8, ERF1A, and ERF2) or sugar metabolism (such as ACC2, GH3, LHCB1.4, XTH4, and SUS2). Although sucrose and ethylene may counteract each other at the biosynthetic level, they may also work synergistically on Pi-starvation-induced gene expression (such as PT1, PT2, RNS1, ACP5, AT4, and IPS1) and root acid phosphatase activation. Furthermore, three new transcription factors that are responsive to Pi starvation were identified: the zinc-finger MYND domain-containing protein 15 (MYND), a Magonashi family protein (MAGO), and a B-box zinc-finger family salt-tolerance protein. This study indicates that the two methods are highly efficient for functional gene screening in non-model organisms.


Asunto(s)
Brassica napus/genética , Regulación de la Expresión Génica de las Plantas , Fosfatos/deficiencia , Transducción de Señal , Factores de Transcripción/genética , Transcriptoma , Análisis de Varianza , Brassica napus/crecimiento & desarrollo , Brassica napus/fisiología , Etilenos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Fosfatos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ARN , Técnicas de Hibridación Sustractiva , Factores de Transcripción/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(27): 7661-6, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27325772

RESUMEN

The phenomenon of delayed flowering after the application of nitrogen (N) fertilizer has long been known in agriculture, but the detailed molecular basis for this phenomenon is largely unclear. Here we used a modified method of suppression-subtractive hybridization to identify two key factors involved in N-regulated flowering time control in Arabidopsis thaliana, namely ferredoxin-NADP(+)-oxidoreductase and the blue-light receptor cryptochrome 1 (CRY1). The expression of both genes is induced by low N levels, and their loss-of-function mutants are insensitive to altered N concentration. Low-N conditions increase both NADPH/NADP(+) and ATP/AMP ratios, which in turn affect adenosine monophosphate-activated protein kinase (AMPK) activity. Moreover, our results show that the AMPK activity and nuclear localization are rhythmic and inversely correlated with nuclear CRY1 protein abundance. Low-N conditions increase but high-N conditions decrease the expression of several key components of the central oscillator (e.g., CCA1, LHY, and TOC1) and the flowering output genes (e.g., GI and CO). Taken together, our results suggest that N signaling functions as a modulator of nuclear CRY1 protein abundance, as well as the input signal for the central circadian clock to interfere with the normal flowering process.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Criptocromos/fisiología , Ferredoxina-NADP Reductasa/metabolismo , Flores/fisiología , Nitrógeno/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Relojes Circadianos , Mutación , NADP/metabolismo , Técnicas de Hibridación Sustractiva
8.
Plant Cell ; 27(4): 1128-39, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25841036

RESUMEN

Hypocotyl elongation is a highly coordinated physiological response regulated by myriad internal and external cues. Here, we show that BBX19, a transcriptional regulator with two B-box motifs, is a positive regulator of growth; diminished BBX19 expression by RNA interference reduces hypocotyl length, and its constitutive expression promotes growth. This function of BBX19 is dependent on the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), EARLY FLOWERING3 (ELF3), and PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5. BBX19 is nucleus-colocalized and interacts physically with COP1 and ELF3, a component of the evening complex that represses the expression of PIF4 and PIF5. Moreover, ELF3 protein abundance inversely correlates with BBX19 expression levels in a COP1-dependent manner. By contrast, PIF expression, coinciding with the initiation of hypocotyl growth in the early evening, is positively correlated with the BBX19 transcript abundance. These results collectively establish BBX19 as an adaptor that binds to and recruits ELF3 for degradation by COP1 and, as such, dynamically gates the formation of the evening complex, resulting in derepression of PIF4/5. This finding refines our perspective on how plants grow by providing a molecular link between COP1, ELF3, and PIF4/5 as an underlying mechanism of photomorphogenic development in Arabidopsis thaliana.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas
9.
Plant Cell Environ ; 40(9): 1834-1848, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28556250

RESUMEN

Nitric oxide (NO) is extensively involved in various growth processes and stress responses in plants; however, the regulatory mechanism of NO-modulated cellular sugar metabolism is still largely unknown. Here, we report that NO significantly inhibited monosaccharide catabolism by modulating sugar metabolic enzymes through S-nitrosylation (mainly by oxidizing dihydrolipoamide, a cofactor of pyruvate dehydrogenase). These S-nitrosylation modifications led to a decrease in cellular glycolysis enzymes and ATP synthase activities as well as declines in the content of acetyl coenzyme A, ATP, ADP-glucose and UDP-glucose, which eventually caused polysaccharide-biosynthesis inhibition and monosaccharide accumulation. Plant developmental defects that were caused by high levels of NO included delayed flowering time, retarded root growth and reduced starch granule formation. These phenotypic defects could be mediated by sucrose supplementation, suggesting an essential role of NO-sugar cross-talks in plant growth and development. Our findings suggest that molecular manipulations could be used to improve fruit and vegetable sweetness.


Asunto(s)
Arabidopsis/metabolismo , Monosacáridos/metabolismo , Óxido Nítrico/farmacología , Complejos de ATP Sintetasa/metabolismo , Adenosina Difosfato Glucosa/metabolismo , Adenosina Trifosfato/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Glucólisis/efectos de los fármacos , Mutación/genética , Nitrosación , Oxidación-Reducción , Fenotipo , Desarrollo de la Planta/efectos de los fármacos , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Solubilidad , Almidón/metabolismo , Sacarosa/farmacología , Ácido Tióctico/análogos & derivados , Ácido Tióctico/metabolismo , Uridina Difosfato Glucosa/metabolismo
10.
Plant Cell ; 26(9): 3589-602, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25228341

RESUMEN

The timely transition of vegetative to reproductive development is coordinated through quantitative regulation of floral pathway genes in response to physiological and environmental cues. Here, we show that the circadian-controlled expression of the Arabidopsis thaliana floral transition regulators FLOWERING LOCUS T (FT) and CONSTANS (CO) is antiphasic to that of BBX19, a transcription factor with two B-Box motifs. Diminished expression of BBX19 by RNA interference accelerates flowering, and constitutive expression of BBX19 delays flowering under inductive photoperiods. This delay is not accompanied by the alteration of CO expression levels but rather by a reduction of transcript levels of FT and the FT-regulated genes SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1, LEAFY, and FRUITFUL. Similar to CO, BBX19 is expressed in vasculature. BBX19 and CO colocalize in the nucleus and interact physically in vivo. In transient assays, coinfiltration of 10-fold more CO overcomes the BBX19-mediated repression of FT activation. Substitution of the conserved Cys-25 to Ser in the BBX19 Box1 motif abolishes the BBX19-CO interaction and eliminates the negative regulation of flowering time, while the analogous C76S substitution in the Box2 motif is ineffective. Together, these results implicate BBX19 as a circadian clock output that depletes the active CO pool to accurately monitor daylength and precisely time FT expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Unión al ADN/metabolismo , Flores/genética , Flores/fisiología , Factores de Transcripción/metabolismo , Transcripción Genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Fotoperiodo , Haz Vascular de Plantas/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
11.
J Integr Plant Biol ; 59(4): 275-287, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28168848

RESUMEN

Hormonal crosstalk is central for tailoring plant responses to the nature of challenges encountered. The role of antagonism between the two major defense hormones, salicylic acid (SA) and jasmonic acid (JA), and modulation of this interplay by ethylene (ET) in favor of JA signaling pathway in plant stress responses is well recognized, but the underlying mechanism is not fully understood. Here, we show the opposing function of two transcription factors, ethylene insensitive3 (EIN3) and EIN3-Like1 (EIL1), in SA-mediated suppression and JA-mediated activation of PLANT DEFENSIN1.2 (PDF1.2). This functional duality is mediated via their effect on protein, not transcript levels of the PDF1.2 transcriptional activator octadecanoid-responsive Arabidopsis59 (ORA59). Specifically, JA induces ORA59 protein levels independently of EIN3/EIL1, whereas SA reduces the protein levels dependently of EIN3/EIL1. Co-infiltration assays revealed nuclear co-localization of ORA59 and EIN3, and split-luciferase together with yeast-two-hybrid assays established their physical interaction. The functional ramification of the physical interaction is EIN3-dependent degradation of ORA59 by the 26S proteasome. These findings allude to SA-responsive reduction of ORA59 levels mediated by EIN3 binding to and targeting of ORA59 for degradation, thus nominating ORA59 pool as a coordination node for the antagonistic function of ET/JA and SA.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Defensinas/genética , Etilenos/metabolismo , Proteínas Nucleares/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/farmacología , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proteínas de Unión al ADN , Defensinas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes Reporteros , Modelos Biológicos , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
J Exp Bot ; 67(5): 1557-66, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26733689

RESUMEN

The exquisite harmony between hormones and their corresponding signaling pathways is central to prioritizing plant responses to simultaneous and/or successive environmental trepidations. The crosstalk between jasmonic acid (JA) and salicylic acid (SA) is an established effective mechanism that optimizes and tailors plant adaptive responses. However, the underlying regulatory modules of this crosstalk are largely unknown. Global transcriptomic analyses of mutant plants (ceh1) with elevated levels of the stress-induced plastidial retrograde signaling metabolite 2-C-methyl-D-erythritol cyclopyrophosphate (MEcPP) revealed robustly induced JA marker genes, expected to be suppressed by the presence of constitutively high SA levels in the mutant background. Analyses of a range of genotypes with varying SA and MEcPP levels established the selective role of MEcPP-mediated signal(s) in induction of JA-responsive genes in the presence of elevated SA. Metabolic profiling revealed the presence of high levels of the JA precursor 12-oxo-phytodienoic acid (OPDA), but near wild type levels of JA in the ceh1 mutant plants. Analyses of coronatine-insensitive 1 (coi1)/ceh1 double mutant plants confirmed that the MEcPP-mediated induction is JA receptor COI1 dependent, potentially through elevated OPDA. These findings identify MEcPP as a previously unrecognized central regulatory module that induces JA-responsive genes in the presence of high SA, thereby staging a multifaceted plant response within the environmental context.


Asunto(s)
Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Eritritol/análogos & derivados , Oxilipinas/metabolismo , Plastidios/metabolismo , Ácido Salicílico/metabolismo , Transducción de Señal/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Eritritol/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Modelos Biológicos , Mutación/genética , Plastidios/efectos de los fármacos
13.
Plant J ; 80(1): 82-92, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25039701

RESUMEN

Plants cope with environmental challenges by rapidly triggering and synchronizing mechanisms governing stress-specific and general stress response (GSR) networks. The GSR acts rapidly and transiently in response to various stresses, but the underpinning mechanisms have remained elusive. To define GSR regulatory components we have exploited the Rapid Stress Response Element (RSRE), a previously established functional GSR motif, using Arabidopsis plants expressing a 4xRSRE::Luciferase (RSRE::LUC) reporter. Initially, we searched public microarray datasets and found an enrichment of RSRE in promoter sequences of stress genes. Next, we treated RSRE::LUC plants with wounding and a range of rapidly stress-inducible hormones and detected a robust LUC activity solely in response to wounding. Application of two Ca(2+) burst inducers, flagellin22 (flg22) and oligogalacturonic acid, activated RSRE strongly and systemically, while the Ca(2+) chelator ethylene glycol tetraacetic acid (EGTA) significantly reduced wound induction of RSRE::LUC. In line with the signaling function of Ca(2+) in transduction events leading to activation of RSRE, we examined the role of CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATORs (CAMTAs) in RSRE induction. Transient expression assays displayed CAMTA3 induction of RSRE and not that of the mutated element mRSRE. Treatment of selected camta mutant lines integrated into RSRE::LUC parent plant, with wounding, flg22, and freezing, established a differential function of these CAMTAs in potentiating the activity of RSRE. Wound response studies using camta double mutants revealed a cooperative function of CAMTAs2 and 4 with CAMTA 3 in the RSRE regulation. These studies provide insights into governing components of transduction events and reveal transcriptional modules that tune the expression of a key GSR motif.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al Calcio/metabolismo , Calmodulina/metabolismo , Regulación de la Expresión Génica de las Plantas , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Unión al Calcio/genética , Congelación , Genes Reporteros , Modelos Biológicos , Mutagénesis Insercional , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Regiones Promotoras Genéticas/genética , Elementos de Respuesta , Transducción de Señal , Estrés Fisiológico , Transactivadores/genética , Factores de Transcripción/genética , Activación Transcripcional
14.
Plant Physiol ; 164(3): 1151-60, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24429214

RESUMEN

Membranes are primary sites of perception of environmental stimuli. Polyunsaturated fatty acids are major structural constituents of membranes that also function as modulators of a multitude of signal transduction pathways evoked by environmental stimuli. Different stresses induce production of a distinct blend of oxygenated polyunsaturated fatty acids, "oxylipins." We employed three Arabidopsis (Arabidopsis thaliana) ecotypes to examine the oxylipin signature in response to specific stresses and determined that wounding and drought differentially alter oxylipin profiles, particularly the allene oxide synthase branch of the oxylipin pathway, responsible for production of jasmonic acid (JA) and its precursor 12-oxo-phytodienoic acid (12-OPDA). Specifically, wounding induced both 12-OPDA and JA levels, whereas drought induced only the precursor 12-OPDA. Levels of the classical stress phytohormone abscisic acid (ABA) were also mainly enhanced by drought and little by wounding. To explore the role of 12-OPDA in plant drought responses, we generated a range of transgenic lines and exploited the existing mutant plants that differ in their levels of stress-inducible 12-OPDA but display similar ABA levels. The plants producing higher 12-OPDA levels exhibited enhanced drought tolerance and reduced stomatal aperture. Furthermore, exogenously applied ABA and 12-OPDA, individually or combined, promote stomatal closure of ABA and allene oxide synthase biosynthetic mutants, albeit most effectively when combined. Using tomato (Solanum lycopersicum) and Brassica napus verified the potency of this combination in inducing stomatal closure in plants other than Arabidopsis. These data have identified drought as a stress signal that uncouples the conversion of 12-OPDA to JA and have revealed 12-OPDA as a drought-responsive regulator of stomatal closure functioning most effectively together with ABA.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/fisiología , Sequías , Oxilipinas/metabolismo , Estomas de Plantas/fisiología , Adaptación Fisiológica/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Brassica napus/efectos de los fármacos , Brassica napus/fisiología , Ciclopentanos/metabolismo , Ácidos Grasos Insaturados/farmacología , Liasas/metabolismo , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/fisiología , Estomas de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Estrés Fisiológico/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
15.
J Am Heart Assoc ; 12(17): e028185, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37642020

RESUMEN

Background Pathological cardiac hypertrophy is a major cause of heart failure morbidity. The complex mechanism of intermolecular interactions underlying the pathogenesis of cardiac hypertrophy has led to a lack of development and application of therapeutic methods. Methods and Results Our study provides the first evidence that TRAF4, a member of the tumor necrosis factor receptor-associated factor (TRAF) family, acts as a promoter of cardiac hypertrophy. Here, Western blotting assays demonstrated that TRAF4 is upregulated in cardiac hypertrophy. Additionally, TRAF4 deletion inhibits the development of cardiac hypertrophy in a mouse model after transverse aortic constriction surgery, whereas its overexpression promotes phenylephrine stimulation-induced cardiomyocyte hypertrophy in primary neonatal rat cardiomyocytes. Mechanistically, RNA-seq analysis revealed that TRAF4 promoted the activation of the protein kinase B pathway during cardiac hypertrophy. Moreover, we found that inhibition of protein kinase B phosphorylation rescued the aggravated cardiomyocyte hypertrophic phenotypes caused by TRAF4 overexpression in phenylephrine-treated neonatal rat cardiomyocytes, suggesting that TRAF4 may regulate cardiac hypertrophy in a protein kinase B-dependent manner. Conclusions Our results revealed the regulatory function of TRAF4 in cardiac hypertrophy, which may provide new insights into developing therapeutic and preventive targets for this disease.


Asunto(s)
Insuficiencia Cardíaca , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Ratas , Factor 4 Asociado a Receptor de TNF , Fenilefrina/farmacología , Cardiomegalia
16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(1): 50-2, 2012 Jan.
Artículo en Zh | MEDLINE | ID: mdl-22497125

RESUMEN

As a kind of new electric light source, electrodeless discharge lamps are of long life, low mercury and non-stroboscopic light. The lighting effect of electrodeless discharge lamps depends on the radiation efficiency of 253.7 nm resonance spectra line to a large extent. The influence of cold temperature on 253.7 nm resonance spectra line has been studied experimentally by atomic emission spectral analysis. It was found that the radiation efficiency of 253.7 nm resonance spectra line is distributed in a nearly normal fashion with the variation of cold spot temperature, in other words, there is an optimum cold spot temperature for an electrodeless discharge lamp. At last, the results of experiments were analyzed through gas discharge theory, which offers guidance to the improvement of lighting effect for electrodeless discharge lamps.

17.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(9): 2314-7, 2012 Sep.
Artículo en Zh | MEDLINE | ID: mdl-23240386

RESUMEN

As a kind of new electric light source, electrodeless discharge lamps (EDL) are based on high-frequency electromagnetic induction and nonpolar gas discharge. Visible light is emitted as a result of Hg 253.7 nm resonance spectrum line inspiring phosphor. The influence of indium net position on the Hg 253. 7 nm resonance spectral line was studied experimentally by atomic emission spectral analysis. It was found that the relative intensity of Hg 253.7 nm resonance spectral line is strongest when the indium net is located at both ends of coupling coil, weaker at middle and weakest when far away from coupling coil. It was inferred that there is an optimum indium net position for EDL, and the corresponding lighting effect is maximal. The results were qualitatively analyzed from the standpoint of gas discharge theory, combined with the finite element simulation of Maxwell 3D, which has instructive value for pattern design and parametric optimization of EDL.

18.
Huan Jing Ke Xue ; 43(7): 3884-3894, 2022 Jul 08.
Artículo en Zh | MEDLINE | ID: mdl-35791571

RESUMEN

A long-term fertilization experiment with a system of rice-wheat rotation was conducted in Chengdu Plain. Three fertilization treatments including conventional fertilization (T1), pig manure substituting for 50% nitrogen fertilizer (T2), and T2 plus straw (T3) were set up to study the characteristics of microbial carbon source utilization of soil and dissolved organic matter (DOM). The results showed that T3 improved the soil microbial carbon source metabolism in comparison with those of the T1 and T2 treatments; the average color change rate (AWCD) increased by 16% and 48%, respectively. Meanwhile, T3 improved the soil DOM microbial carbon source metabolism, and the AWCD value was 0.43. The highest Shannon, Simpson, and McIntosh indexes of soil and DOM were all found in the T3 treatment, and the Shannon, Simpson, and McIntosh indexes of DOM were 2.73, 0.91, and 3.75, respectively. The results of principal component analysis and enrichment analysis showed that the main carbon sources used by microorganisms of soil and DOM were different under different fertilization treatments. For DOM, the main carbon source used by microorganisms in the T1 and T2 treatments was sugar, whereas T3 increased the utilization of amino acids, carboxylic acids, polymers, and amines. The changes in soil pH and texture were the main factors that caused the difference in soil DOM microbial carbon source metabolism. In conclusion, the application of organic fertilizer (pig manure plus straw) significantly increased the microbial community diversity and carbon source metabolic capacity of soil and DOM and promoted the diversification of microbial carbon source preference.


Asunto(s)
Carbono , Suelo , Animales , Carbono/química , Materia Orgánica Disuelta , Fertilizantes , Estiércol , Suelo/química , Microbiología del Suelo , Porcinos
19.
Foods ; 11(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35892802

RESUMEN

The quality of Tarocco blood orange (Citrus sinensis (L.) Osbeck), which has been cultivated for many years, has degraded substantially. Decreased sugar content, decreased blood color, and increased sour flavor have developed as a result. To improve fruit quality, we studied the effects of bagging and sodium nitroprusside, as a nitric oxide (NO) donor, on the fruit quality of Tarocco blood orange two months before picking. The results showed that NO treatment effectively improved the content of total soluble solids and limonene in the fruit, as well as the color and hardness of the fruit, but reduced the tannin content. It also increased the contents of soluble sugar, fructose, sucrose, vitamin C, amino acids, and mineral elements. NO treatment inhibited the activities of polygalacturonase and pectin esterase, delayed the degradation of protopectin, and promoted the accumulation of anthocyanins, total flavonoids, and flavonoids synthesis. Thus, NO treatment improved the aroma, flavors, and physical properties of blood orange fruit.

20.
Chemosphere ; 292: 133466, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34973246

RESUMEN

Most hyperaccumulator plants have little economic values, and therefore have not been widely used in Cd-contaminated soils. Rape species are Cd hyperaccumulators with high economic values. Black mustard seed (Brassica juncea) has a higher accumulation ability and a higher tolerance for Cd than oilseed rape (Brassica napus), but its biomass is relatively low and its geographical distribution is limited. However, it is unknown why B. juncea (Bj) is more tolerant to and accumulates more Cd than B. napus (Bn). Here, we found that the differences in Cd accumulation and tolerance between the two species is mainly because Bj plants have higher levels of salicylic acid and glutamic acid than Bn plants. Exogenous salicylate and glutamate treatments enhanced Cd accumulation (salicylate + glutamate co-treatment doubled Cd accumulation level in Bn seedlings) but reduced oxidative stresses by increasing glutathione biosynthesis and activating phytochelatin-based sequestration of Cd into vacuoles. Our results provide a new idea to simultaneously improve Cd accumulation and Cd tolerance in B. napus.


Asunto(s)
Brassica napus , Biodegradación Ambiental , Cadmio/análisis , Cadmio/toxicidad , Ácido Glutámico , Planta de la Mostaza , Salicilatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA