Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 251(Pt 2): 118673, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38493845

RESUMEN

Both microplastics (MPs) and heavy metals are common soil pollutants and can interact to generate combined toxicity to soil ecosystems, but their impact on soil microbial communities (e.g., archaea and viruses) remains poorly studied. Here, metagenomic analysis was used to explore the response of soil microbiome in an agricultural soil exposed to MPs [i.e., polyethylene (PE), polystyrene (PS), and polylactic acid (PLA)] and/or Cd. Results showed that MPs had more profound effects on microbial community composition, diversity, and gene abundances when compared to Cd or their combination. Metagenomic analysis indicated that the gene taxonomic diversity and functional diversity of microbial communities varied with MPs type and dose. MPs affected the relative abundance of major microbial phyla and genera, while their coexistence with Cd influenced dominant fungi and viruses. Nitrogen-transforming and pathogenic genera, which were more sensitive to MPs variations, could serve as the indicative taxa for MPs contamination. High-dose PLA treatments (10%, w/w) not only elevated nitrogen metabolism and pathogenic genes, but also enriched copiotrophic microbes from the Proteobacteria phylum. Overall, MPs and Cd showed minimal interactions on soil microbial communities. This study highlights the microbial shifts due to co-occurring MPs and Cd, providing evidence for understanding their environmental risks.


Asunto(s)
Cadmio , Metagenómica , Microplásticos , Microbiología del Suelo , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Microplásticos/toxicidad , Agricultura , Microbiota/efectos de los fármacos , Suelo/química , Bacterias/genética , Bacterias/clasificación , Bacterias/efectos de los fármacos
2.
Environ Technol ; : 1-13, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429873

RESUMEN

Because of its extreme toxicity and health risks, hexavalent chromium [Cr(VI)] has been identified as a major environmental contaminant. Bioreduction is considered as one of effective techniques for cleaning up Cr(VI)-contaminated sites, but the remediation efficiency needs to be enhanced. Here, a novel immobilized microbial agent was produced by immobilizing Bacillus cereus ZY-2009 with sodium alginate (SA) using polyvinyl alcohol (PVA) and activated carbon (AC). To evaluate the decrease of Cr(VI) by immobilized bacterial agents, batch tests were conducted with varying immobilization conditions, immobilization carriers, and dosages of medication. The removal of Cr(VI) by the agent prepared by the composite immobilization method was better than that by the adsorption and encapsulation methods. The optimal preparation conditions were the fraction of magnetic PVA was 5.00%, the fraction of SA was 4.00%, the fraction of CaCl2 was 4.00%, and the calcification time was 12 h. The experimental results indicated that PVA/SA/AC agents accelerated the reduction rate of Cr(VI). The removal rate of Cr(VI) by immobilized cells (90.5%) under ideal conditions was substantially higher than that of free cells (11.0%). This novel agent had a large specific surface area and a rich pore structure, accounting for its high reduction rate. The results suggest that the PVA/SA/AC immobilized Bacillus cereus ZY-2009 agent has great potential to remove Cr(VI) from wastewater treatment systems.

3.
Huan Jing Ke Xue ; 45(1): 489-495, 2024 Jan 08.
Artículo en Zh | MEDLINE | ID: mdl-38216498

RESUMEN

The environmental effects of microplastics, which are considered a type of emerging contaminants, have attracted increasing concern due to their small size, large specific surface area, strong adsorption capacity, and low degradability. Microplastics can change soil properties and affect the migration ability of nutrients and pollutants in soil, but their effects on the leaching of soil nutrients and heavy metals have not been sufficiently studied. A soil column leaching experiment was conducted to explore the effects of polystyrene (PS) and polylactic acid (PLA) microplastics at different mass fractions (0%, 0.2%, and 2%) on the leaching of nutrients and cadmium under simulated rainfall scenarios. The results showed that increasing rainfall intensity enhanced the leaching of nutrients and cadmium from soil. During downpour conditions, 2% PS significantly increased the leaching of total nitrogen and the content of available phosphorus in soil and reduced the leaching of inorganic phosphorus and the content of ammonium nitrogen in the soil, whereas it increased the content of available potassium during heavy rain. By comparison, 2% PLA reduced the leaching of nitrate nitrogen during heavy rain and intense rainfall and decreased the content of ammonium nitrogen in soil during intense rainfall and downpour conditions and the content of total nitrogen in soil during downpours. In addition, 0.2% PLA significantly increased cadmium leaching during downpours. To conclude, the effects of microplastics on the leaching of nutrients and cadmium were dependent on the type and concentration of microplastics, as well as the rainfall level. Our findings showed that the microplastics derived from both nondegradable PS and biodegradable PLA could affect the leaching of nutrients and heavy metals from soil.

4.
J Hazard Mater ; 471: 134333, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38643581

RESUMEN

Microplastics (MPs) are emerging contaminants found globally. However, their effects on soil-plant systems in salt-affected habitats remain unknown. Here, we examined the effects of polyethylene (PE) and polylactic acid (PLA) on soil properties, maize performance, and bacterial communities in soils with different salinity levels. Overall, MPs decreased soil electrical conductivity and increased NH4+-N and NO3--N contents. Adding NaCl alone had promoting and inhibitive effects on plant growth in a concentration-dependent manner. Overall, the addition of 0.2% PLA increased shoot biomass, while 2% PLA decreased it. Salinity increased Na content and decreased K/Na ratio in plant tissues (particularly roots), which were further modified by MPs. NaCl and MPs singly and jointly regulated the expression of functional genes related to salt tolerance in leaves, including ZMSOS1, ZMHKT1, and ZMHAK1. Exposure to NaCl alone had a slight effect on soil bacterial α-diversity, but in most cases, MPs increased ACE, Chao1, and Shannon indexes. Both MPs and NaCl altered bacterial community composition, although the specific effects varied depending on the type and concentration of MPs and the salinity level. Overall, PLA had more pronounced effects on soil-plant systems compared to PE. These findings bridge knowledge gaps in the risks of MPs in salt-affected habitats.


Asunto(s)
Bacterias , Microplásticos , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Zea mays , Contaminantes del Suelo/toxicidad , Suelo/química , Microplásticos/toxicidad , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Bacterias/clasificación , Cloruro de Sodio/toxicidad , Poliésteres , Salinidad , Polietileno , Microbiota/efectos de los fármacos
5.
Mar Pollut Bull ; 200: 116118, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325200

RESUMEN

The latitudinal dynamics of biodiversity has been the focus of global attention. This study is based on the latitude gradient of biodiversity in the spatial changes of pelagic ciliate communities in the western Arctic Ocean. The gradient pattern of pelagic ciliate communities across four latitudes were investigated from the water surface at 22 sampling station in the northern Bering Sea of the western Arctic Ocean and Chukchi Sea from August 5 to August 24, 2016. Based on multivariate analyses, the results showed that (1) the spatial patterns of pelagic ciliates represented a significant latitudinal gradient along the western Arctic Ocean; (2) the species number and abundance of pelagic ciliate communities declined from 64°N to 80°N; (3) variations in the horizontal distribution of ciliates were significantly correlated with changes in physicochemical variables, especially water temperature and Chl a; Thus it is suggested that the expected latitudinal decline of biodiversity was evident along the western Arctic Ocean.


Asunto(s)
Biodiversidad , Cilióforos , Agua , Temperatura , Regiones Árticas , Océanos y Mares
6.
Environ Technol ; : 1-15, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875356

RESUMEN

Petroleum hydrocarbons as pervasive pollutants pose a significant threat to soil ecology and human health. Surfactant washing as an established technique can effectively remediate soils contaminated by hydrocarbons. Biosurfactants, which combine the properties of surfactants and environmental compatibility, have attracted increasing interest. However, due to the high production cost of biosurfactants, their practical application is restricted. This study addressed these limitations by selecting two biosurfactants, ß-cyclodextrin (C1) and sodium carboxymethyl cellulose (C2), and developed a promising cleaning agent formula through compounding and the addition of suitable additives. When the volume ratio of C1 to C2 was 8:2 and an 8 g/L mixture of sodium humate and sodium carbonate electrolyte was added, the surfactant system's surface tension reached a minimum, yielding optimal oil removal. The formation and synergistic behaviour of mixed micelles of surfactants were explained using ideal solution theory and the Rubingh model. By optimising the oil washing process parameters - normal temperature of 25 °C, pH 11, washing time of 2 h, solid-liquid ratio of 1:5, and oscillation frequency of 200 r/min - the oil removal rate achieved 76%. This cleaning agent, characterised by low production cost, straightforward application, environmental compatibility, and rapid, significant cleaning effect, shows potential for field-scale purification of petroleum-contaminated soil.

7.
Mar Pollut Bull ; 204: 116519, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850758

RESUMEN

Microplastics (MPs) have become pervasive in marine ecosystems, exerting detrimental effects on marine life. The concurrent presence and interaction of MPs and heavy metals in aquatic environments could engender more insidious toxicological impacts. This study aimed to elucidate the potential impacts and underlying mechanisms of polystyrene microplastics (PS-MPs), cadmium (Cd), and their combined stress (MPs-Cd) on sea cucumbers (Apostichopus japonicus). It focused on the growth, Cd bioaccumulation, oxidative stress responses, immunoenzymatic activities, and metabolic profiles, specifically considering PS-MPs sizes preferentially ingested by these organisms. The high-dose MPs (MH) treatment group exhibited an increase in cadmium bioavailability within the sea cucumbers. Exposure to PS-MPs or Cd triggered the activation of antioxidant defenses and immune responses. PS-MPs and Cd exhibited a synergistic effect on lysozyme (LZM) activity. A total of 149, 316, 211, 197, 215, 619, 434, and 602 differentially expressed metabolites were identified, distinguishing the low-dose MPs (ML), high-dose MPs (MH), low-dose Cd (LCd), low-dose MPs and low-dose Cd (MLLCd), high-dose MPs and low-dose Cd (MHLCd), high-dose Cd (HCd), low-dose MPs and high-dose Cd (MLHCd), high-dose MPs and high-dose Cd (MHHCd) groups, respectively. Metabolomic analyses revealed disruptions in lipid metabolism, nervous system function, signal transduction, and transport and catabolism pathways following exposure to PS-MPs, Cd, and MPs-Cd. Correlation analyses among key differentially expressed metabolites (DEMs) underscored the interregulation among these metabolic pathways. These results offer new perspectives on the distinct and synergistic toxicological impacts of microplastics and cadmium on aquatic species, highlighting the complex interplay between environmental contaminants and their effects on marine life.


Asunto(s)
Cadmio , Microplásticos , Poliestirenos , Contaminantes Químicos del Agua , Cadmio/toxicidad , Animales , Microplásticos/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Stichopus , Estrés Oxidativo , Adaptación Fisiológica
8.
J Agric Food Chem ; 72(30): 16674-16686, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39021203

RESUMEN

The potential impacts of biodegradable and nonbiodegradable microplastics (MPs) on rhizosphere microbial nitrogen (N) transformation processes remain ambiguous. Here, we systematically investigated how biodegradable (polybutylene succinate, PBS) MPs and nonbiodegradable (polyethylene, PE) MPs affect microbial N processes by determining rhizosphere soil indicators of typical Glycine max (soybean)-soil (i.e., red and brown soils) systems. Our results show that MPs altered soil pH and dissolved organic carbon in MP/soil type-dependent manners. Notably, soybean growth displayed greater sensitivity to 1% (w/w) PBS MP exposure in red soil than that in brown soil since 1% PBS acidified the red soil and impeded nutrient uptake by plants. In the rhizosphere, 1% PBS negatively impacted microbial community composition and diversity, weakened microbial N processes (mainly denitrification and ammonification), and disrupted rhizosphere metabolism. Overall, it is suggested that biodegradable MPs, compared to nonbiodegradable MPs, can more significantly influence the ecological function of the plant-soil system.


Asunto(s)
Plásticos Biodegradables , Biodegradación Ambiental , Glycine max , Microplásticos , Microbiología del Suelo , Suelo , Plásticos Biodegradables/química , Plásticos Biodegradables/metabolismo , Concentración de Iones de Hidrógeno , Microplásticos/química , Microplásticos/metabolismo , Suelo/química , Glycine max/química , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo , Glycine max/microbiología , Nitrógeno/metabolismo , Rizosfera , Fenómenos Químicos , Microbiota
9.
Environ Sci Pollut Res Int ; 31(9): 13327-13334, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244160

RESUMEN

The pollution of microplastics (MPs) to the marine environment has become a widespread focus of attention. To assess MP-induced ecotoxicity on marine ecosystems, periphytic protozoan communities were used as test organisms and exposed to five concentrations of MPs: 0, 1, 5, 25, and 125 mg l-1. Protozoan samples were collected using microscope slides from coastal waters of the Yellow Sea, northern China. A total of 13 protozoan species were identified and represented different tolerance to MP-induced ecotoxicity. Inhibition effects of MPs on the test protozoan communities were clearly shown in terms of both the species richness and individual abundance and followed linear relationships to MP concentrations. The community patterns were driven by MPs and significantly shifted at concentrations over 5 mg l-1. Our findings demonstrated that MPs may induce the community-level ecotoxic response of periphytic protozoan fauna and followed significant community dynamics. Thus, it is suggested that periphytic protozoan fauna may be used as useful community-based test model organisms for evaluating MP-induced ecotoxicity in marine environments.


Asunto(s)
Cilióforos , Contaminantes Químicos del Agua , Ecosistema , Biodiversidad , Monitoreo del Ambiente , Microplásticos , Plásticos , Cilióforos/fisiología , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA