RESUMEN
In this work, MIL-88A(Fe) was immobilized onto the expanded perlites to fabricate the floating MIL-88A(Fe)@expanded perlites (M@EP) catalyst via high throughput batch synthesis method under room temperature. The as-prepared M@EP could efficiently activate H2O2 to achieve 100% tetracycline antibiotics (TCs) removal under both artificial low power UV light (UVL) and real sunlight (SL) irradiation. The toxicological evaluation, growth experiment of mung beans and antimicrobial estimation revealed the decreasing aquatic toxicity of the TCs intermediates compared to those of the pristine TCs. A self-designed continuous bed reactor was employed to investigate the long-term operation of the M@EP. The findings demonstrated that the antibiotics mixture can be continuously degraded up to 7 days under UVL and 5 daytimes under SL irradiation, respectively. More importantly, ca. 76.9% and 81.6% of total organic carbon (TOC) removal efficiencies were accomplished in continuous bed reactor under UVL and SL irradiation, respectively. This work advances the immobilized MOFs on floating supports for their practical application in large-scale wastewater purification through advanced oxidation processes. ENVIRONMENTAL IMPLICATION: This work presented the high throughput production and photo-Fenton degradation application of floating MIL-88A(Fe)@expanded perlites (M@EP). Three tetracycline antibiotics (TCs) were selected as model pollutants to test the degradation ability of M@EP in batch experiment and continuous operation under artificial light and solar light. The complete TCs degradation could be accomplished in self-designed device up to 7 d under UV light and 5 d under real solar light. This work tapped a new door to push MOFs-based functional materials in the real water purification.
RESUMEN
In this work, a three-dimensional bimetallic metal-organic framework (BMOF), BUC-101 (Co/Mn-H6chhc, H6chhc = cis-1,2,3,4,5,6-cyclohexane-hexacarboxylic acid, BUC = Beijing University of Civil Engineering and Architecture) was synthesized by a one-pot solvothermal method and characterized in detail by single crystal X-ray diffraction (SCXRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) element mapping analysis. BUC-101 showed excellent catalytic peroxymonosulfate (PMS) activation performance to degrade rhodamine B (RhB) without energy input. In addition, BUC-101 can maintain good stability and recyclability during the PMS activation processes, in which 99.9% RhB degradation efficiencies could be accomplished in 5 operational runs. The possible PMS activation and RhB degradation mechanisms of the BUC-101/PMS system were proposed and affirmed.
RESUMEN
Cobalt 2-methylimidazole (ZIF-67) have abundant nitrogen and cobalt elements, which can be used as an excellent precursor for catalyst synthesis. In this study, a new Co, N co-doped carbon-based catalyst (Co-N-BC) was synthesized from ZIF-67 and biochar, which can significantly improve the degradation of 4-nitrophenol (4-NP) in catalytic ozonation. The mineralization rate of 4-NP achieves 65.8% within 60 min. The catalyst showed high recycling stability in the four cycles of reuse experiment. Different operating parameters, such as solution pH, the concentration of O3 and 4-NP, have been studied in the Co-N-BC catalytic ozonation. O3, O2-· and ·OH are determined as the main reactive species for 4-NP degradation, and ·OH is especially responsibly for 4-NP mineralization. The existence of inorganic ions, such as Cl-, NO2-, CO32- and PO43-, all significantly inhibited the degradation of 4-NP to different extend, respectively. The effect of substituent on a series of organics with similar structure of 4-NP was also investigated in Co-N-BC catalytic ozonation. This study provides a new composite material for heterogeneous catalytic ozonation, which is very promising in 4-NP contained complex wastewater treatment.
Asunto(s)
Ozono , Contaminantes Químicos del Agua , Ozono/química , Contaminantes Químicos del Agua/análisis , Catálisis , Cobalto/químicaRESUMEN
Constructing Fe-Cu bimetal catalysts is an efficient strategy to promote Fe(III)/Fe(II) cycle, whereas there is still a long way to go before fully understanding the role of the Cu in the catalysts. Herein, a new Fe-MOF namely BUC-96(Fe) was fabricated from FeSO4·7H2O, 4,4'-bipyridine (bpy) and 2,5-dihydroxyterephthalic acid (H4dhtp) by both hydrothermal reaction and microwave-assisted method. Also, bimetal BUC-96(FeCu-x) were obtained when the CuSO4 was added into the system identical to the synthesis process of BUC-96(Fe). Series BUC-96 MOFs showed good organics elimination performance via Fenton-like process, where 88.1% (k = 0.0672 min-1) of chloroquine phosphate (CQ, 20 mg/L) was decomposed over pristine BUC-96(Fe) within 30 min. Interestingly, nearly 100% CQ was degraded over BUC-96(FeCu-5) as catalyst under the identical conditions within 5 min, whose reaction rate (1.3527 min-1) was 20.1-fold higher than that of BUC-96. Additionally, BUC-96(FeCu-5) exhibited excellent Fenton-like oxidation degradation performance for 10 selected emerging organic pollutants. The reaction mechanism was studied in detail by experiments, and density functional theory (DFT) calculation. The results revealed that the introduced Cu not only accelerated Fe(III)/Fe(II) cycles, hydroxyl radical (·OH) generation, electron transfer, but also lowered H2O2 dissociated energy barrier. This work advanced the bimetal MOFs construction and application in wastewater treatment via Fenton-like process.
RESUMEN
In this work, the amorphous CoSx@SiO2 nanocages were hydrothermally synthesized by sulfurizing ZIF-67@SiO2 in the presence of thioacetamide (TAA). The catalytic performances of CoSx@SiO2 nanocages as heterogeneous catalysts to activate peroxymonosulfate (PMS) for the sulfamethoxazole (SMX) degradation were systematically investigated. 100% SMX was degraded within 6 min in CoSx@SiO2/PMS system, indicating that the amorphous CoSx@SiO2 nanocages exhibited outstanding sulfate radical-advanced oxidation process (SR-AOP) activity toward SMX degradation due to the regeneration of Co2+ by surficial sulfur species like S2-/S22-. The effects of PMS dosages, initial pH, SMX concentrations and co-existing ions on SMX degradation efficiency were explored in detail. The SMX removal efficiency was obviously improved in the simulated wastewater containing chloride ions (Cl-) and low-concentration bicarbonate ions (HCO3-). The residual PMS and the generated sulfate radical (SO4·-) were determined quantitatively in CoSx@SiO2/PMS system. A possible mechanism in CoSx@SiO2/PMS system was proposed based on the results of quenching experiments, X-ray photoelectron spectroscopy (XPS) analysis, electrochemical tests, and electron spin resonance (ESR). The CoSx@SiO2 exhibited good stability and reusability, in which 100% SMX removal was achieved even after five consecutive cycles. This work provided a strategy for regulating the stability of cobalt-based catalyst for efficient pollutant degradation by PMS activation.