Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 579
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(10): 3889-3910, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37399070

RESUMEN

Dissecting genetic components in crop plants associated with heat stress (HS) sensing and adaptation will facilitate the design of modern crop varieties with improved thermotolerance. However, the molecular mechanisms underlying the ON/OFF switch controlling HS responses (HSRs) in wheat (Triticum aestivum) remain largely unknown. In this study, we focused on the molecular action of TaHsfA1, a class A heat shock transcription factor, in sensing dynamically changing HS signals and regulating HSRs. We show that the TaHsfA1 protein is modified by small ubiquitin-related modifier (SUMO) and that this modification is essential for the full transcriptional activation activity of TaHsfA1 in triggering downstream gene expression. During sustained heat exposure, the SUMOylation of TaHsfA1 is suppressed, which partially reduces TaHsfA1 protein activity, thereby reducing the intensity of downstream HSRs. In addition, we demonstrate that TaHsfA1 interacts with the histone acetyltransferase TaHAG1 in a thermosensitive manner. Together, our findings emphasize the importance of TaHsfA1 in thermotolerance in wheat. In addition, they define a highly dynamic SUMOylation-dependent "ON/OFF" molecular switch that senses temperature signals and contributes to thermotolerance in crops.


Asunto(s)
Sumoilación , Triticum , Triticum/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Respuesta al Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(38): e2300366120, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695897

RESUMEN

Immune cell-based cancer therapies, such as chimeric antigen receptor T (CAR-T)-cell immunotherapy, have demonstrated impressive potency against hematological tumors. However, the efficacy of CAR-T cells against solid tumors remains limited. Herein, we designed tumor-targeting molecule-sialidase conjugates that potently and selectively stripped different sialoglycans from a variety of cancer cells. Desialylation enhanced induced pluripotent stem cell-derived chimeric antigen receptor-macrophage (CAR-iMac) infiltration and activation. Furthermore, the combination of cancer cell desialylation and CAR-iMac adoptive cellular therapy exerted a dramatic therapeutic effect on solid tumors and significantly prolonged the survival of tumor-bearing mice; these effects were mainly dependent on blockade of the checkpoint composed of sialic acid-binding immunoglobulin-like lectin (Siglec)-5 and Siglec-10 on the macrophages, and knockout of the glycoimmune checkpoint receptors could construct a CAR-iMac cell with stronger anticancer activity. This strategy that reverts the immune escape state ("cold tumor") to a sensitive recognition state ("hot tumor") has great significance for enhancing the effect of cellular immunotherapy on solid tumors. Therefore, desialylation combined with CAR-iMac cellular immunotherapy is a promising approach to enhance treatment with cellular immunotherapy and expand the valid indications among solid tumors, which provides inspiration for the development of cellular immunotherapies with glycoimmune checkpoint inhibition for the treatment of human cancer.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Inmunoterapia , Neoplasias/terapia , Metabolismo de los Hidratos de Carbono , Polisacáridos
3.
Proc Natl Acad Sci U S A ; 120(15): e2220608120, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37018199

RESUMEN

A precise modulation of heterogeneous catalysts in structural and surface properties promises the development of more sustainable advanced oxidation water purification technologies. However, while catalysts with superior decontamination activity and selectivity are already achievable, maintaining a long-term service life of such materials remains challenging. Here, we propose a crystallinity engineering strategy to break the activity-stability tradeoff of metal oxides in Fenton-like catalysis. The amorphous/crystalline cobalt-manganese spinel oxide (A/C-CoMnOx) provided highly active, hydroxyl group-rich surface, with moderate peroxymonosulfate (PMS)-binding affinity and charge transfer energy and strong pollutant adsorption, to trigger concerted radical and nonradical reactions for efficient pollutant mineralization, thereby alleviating the catalyst passivation by oxidation intermediate accumulation. Meanwhile, the surface-confined reactions, benefited from the enhanced adsorption of pollutants at A/C interface, rendered the A/C-CoMnOx/PMS system ultrahigh PMS utilization efficiency (82.2%) and unprecedented decontamination activity (rate constant of 1.48 min-1) surpassing almost all the state-of-the-art heterogeneous Fenton-like catalysts. The superior cyclic stability and environmental robustness of the system for real water treatment was also demonstrated. Our work unveils a critical role of material crystallinity in modulating the Fenton-like catalytic activity and pathways of metal oxides, which fundamentally improves our understanding of the structure-activity-selectivity relationships of heterogeneous catalysts and may inspire material design for more sustainable water purification application and beyond.

4.
J Neurosci ; 44(33)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39025678

RESUMEN

The hippocampal CA3 region plays an important role in learning and memory. CA3 pyramidal neurons (PNs) receive two prominent excitatory inputs-mossy fibers (MFs) from dentate gyrus (DG) and recurrent collaterals (RCs) from CA3 PNs-that play opposing roles in pattern separation and pattern completion, respectively. Although the dorsoventral heterogeneity of the hippocampal anatomy, physiology, and behavior has been well established, nothing is known about the dorsoventral heterogeneity of synaptic connectivity in CA3 PNs. In this study, we performed Timm's sulfide silver staining, dendritic and spine morphological analyses, and ex vivo electrophysiology in mice of both sexes to investigate the heterogeneity of MF and RC pathways along the CA3 dorsoventral axis. Our morphological analyses demonstrate that ventral CA3 (vCA3) PNs possess greater dendritic lengths and more complex dendritic arborization, compared with dorsal CA3 (dCA3) PNs. Moreover, using ChannelRhodopsin2 (ChR2)-assisted patch-clamp recording, we found that the ratio of the RC-to-MF excitatory drive onto CA3 PNs increases substantially from dCA3 to vCA3, with vCA3 PNs receiving significantly weaker MFs, but stronger RCs, excitation than dCA3 PNs. Given the distinct roles of MF versus RC inputs in pattern separation versus completion, our findings of the significant dorsoventral variations of MF and RC excitation in CA3 PNs may have important functional implications for the contribution of CA3 circuit to the dorsoventral difference in hippocampal function.


Asunto(s)
Región CA3 Hipocampal , Células Piramidales , Sinapsis , Animales , Ratones , Células Piramidales/fisiología , Región CA3 Hipocampal/fisiología , Región CA3 Hipocampal/citología , Masculino , Femenino , Sinapsis/fisiología , Ratones Endogámicos C57BL , Fibras Musgosas del Hipocampo/fisiología , Dendritas/fisiología , Vías Nerviosas/fisiología
5.
J Virol ; 98(5): e0029924, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38557225

RESUMEN

Autographa californica multiple nucleopolyhedrovirus (AcMNPV) Ac93 is highly conserved in all sequenced baculovirus genomes, and it plays important roles in both the nuclear egress of nucleocapsids and the formation of intranuclear microvesicles. In this study, we characterized a cellular CRM1-dependent nuclear export signal (NES) of AcMNPV Ac93. Bioinformatic analysis revealed that AcMNPV Ac93 may contain an NES at amino acids 115-125. Green fluorescent protein (GFP) fused to the NES (GFP:NES) of AcMNPV Ac93 is localized to the cytoplasm of transfected cells. Multiple point mutation analysis demonstrated that NES is important for the nuclear export of GFP:NES. Bimolecular fluorescence complementation experiments and co-immunoprecipitation assays confirmed that Ac93 interacts with Spodoptera frugiperda CRM1 (SfCRM1). However, AcMNPV Ac34 inhibits cellular CRM1-dependent nuclear export of GFP:NES. To determine whether the NES in AcMNPV Ac93 is important for the formation of intranuclear microvesicles, an ac93-null AcMNPV bacmid was constructed; the wild-type and NES-mutated Ac93 were reinserted into the ac93-null AcMNPV bacmid. Immunofluorescence analysis showed that Ac93 and SfCRM1 were predominantly colocalized at intranuclear microvesicles in infected cells, while the construct containing point mutations at residues 123 and 125 of Ac93 resulted in a defect in budded virus production and the abolishment of intranuclear microvesicles. Together, these data demonstrate that Ac93 contains a functional NES, which is required for the production of progeny viruses and the formation of intranuclear microvesicles.IMPORTANCEAutographa californica multiple nucleopolyhedrovirus (AcMNPV) Ac93 is important for the formation of intranuclear microvesicles. However, how the baculovirus manipulates Ac93 for the formation of intranuclear microvesicles is unclear. In this study, we identified a nuclear export signal (NES) at amino acids 115-125 of AcMNPV Ac93. Our results showed that the NES is required for the interaction between Ac93 and Spodoptera frugiperda CRM1 (SfCRM1). However, AcMNPV Ac34 inhibits the nuclear export of green fluorescent protein fused to the NES. Our analysis revealed that Ac93 and SfCRM1 were predominantly colocalized at intranuclear microvesicles in AcMNPV-infected cells. Together, our results indicate that Ac93 participates in the formation of intranuclear microvesicles via the Ac93 NES-mediated CRM1 pathway.


Asunto(s)
Transporte Activo de Núcleo Celular , Señales de Exportación Nuclear , Nucleopoliedrovirus , Proteínas Virales , Animales , Núcleo Celular/metabolismo , Núcleo Celular/virología , Proteína Exportina 1 , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Carioferinas/metabolismo , Nucleopoliedrovirus/metabolismo , Nucleopoliedrovirus/fisiología , Nucleopoliedrovirus/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Células Sf9 , Spodoptera/virología , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
6.
Mol Psychiatry ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459194

RESUMEN

Cognitive and behavioral rigidity are observed in various psychiatric diseases, including in autism spectrum disorder (ASD). However, the underlying mechanism remains to be elucidated. In this study, we found that neuroligin-3 (NL3) R451C knockin mouse model of autism (KI mice) exhibited deficits in behavioral flexibility in choice selection tasks. Single-unit recording of medium spiny neuron (MSN) activity in the nucleus accumbens (NAc) revealed altered encoding of decision-related cue and impaired updating of choice anticipation in KI mice. Additionally, fiber photometry demonstrated significant disruption in dynamic mesolimbic dopamine (DA) signaling for reward prediction errors (RPEs), along with reduced activity in medial prefrontal cortex (mPFC) neurons projecting to the NAc in KI mice. Interestingly, NL3 re-expression in the mPFC, but not in the NAc, rescued the deficit of flexible behaviors and simultaneously restored NAc-MSN encoding, DA dynamics, and mPFC-NAc output in KI mice. Taken together, this study reveals the frontostriatal circuit dysfunction underlying cognitive inflexibility and establishes a critical role of the mPFC NL3 deficiency in this deficit in KI mice. Therefore, these findings provide new insights into the mechanisms of cognitive and behavioral inflexibility and potential intervention strategies.

7.
Genomics ; 116(5): 110904, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39084476

RESUMEN

Recently, elevated seawater temperatures have resulted numerous adverse effects, including significant mortality among bivalves. The dwarf surf clam, Mulinia lateralis, is considered a valuable model species for bivalve research due to its rapid growth and short generation time. The successful cultivation in laboratory setting throughout its entire life cycle makes it an ideal candidate for exploring the potential mechanisms underlying bivalve responses to thermal stress. In this study, a total of 600 clams were subjected to a 17-day thermal stress experiment at a temperature of 30 °C which is the semi-lethal temperature for this species. Ninety individuals who perished initially were classified as heat-sensitive populations (HSP), while 89 individuals who survived the experiment were classified as heat-tolerant populations (HTP). Subsequently, 179 individuals were then sequenced, and 21,292 single nucleotide polymorphisms (SNPs) were genotyped for downstream analysis. The heritability estimate for survival status was found to be 0.375 ± 0.127 suggesting a genetic basis for thermal tolerance trait. Furthermore, a genome-wide association study (GWAS) identified three SNPs and 10 candidate genes associated with thermal tolerance trait in M. lateralis. These candidate genes were involved in the ETHR/EHF signaling pathway and played pivotal role in signal sensory, cell adhesion, oxidative stress, DNA damage repair, etc. Additionally, qPCR results indicated that, excluding MGAT4A, ZAN, and RFC1 genes, all others exhibited significantly higher expression in the HTP (p < 0.05), underscoring the critical involvement of the ETHR/EHF signaling pathway in M. lateralis' thermal tolerance. These results unveil the presence of standing genetic variations associated with thermal tolerance in M. lateralis, highlighting the regulatory role of the ETHR/EHF signaling pathway in the bivalve's response to thermal stress, which contribute to comprehension of the genetic basis of thermal tolerance in bivalves.

8.
Curr Issues Mol Biol ; 46(2): 1635-1650, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38392224

RESUMEN

Centipedegrass (Eremochloa ophiuroides) is an important warm-season grass plant used as a turfgrass as well as pasture grass in tropical and subtropical regions, with wide application in land surface greening and soil conservation in South China and southern United States. In this study, the complete cp genome of E. ophiuroides was assembled using high-throughput Illumina sequencing technology. The circle pseudomolecule for E. ophiuroides cp genome is 139,107 bp in length, with a quadripartite structure consisting of a large single copyregion of 82,081 bp and a small single copy region of 12,566 bp separated by a pair of inverted repeat regions of 22,230 bp each. The overall A + T content of the whole genome is 61.60%, showing an asymmetric nucleotide composition. The genome encodes a total of 131 gene species, composed of 20 duplicated genes within the IR regions and 111 unique genes comprising 77 protein-coding genes, 30 transfer RNA genes, and 4 ribosome RNA genes. The complete cp genome sequence contains 51 long repeats and 197 simple sequence repeats, and a high degree of collinearity among E. ophiuroide and other Gramineae plants was disclosed. Phylogenetic analysis showed E. ophiuroides, together with the other two Eremochloa species, is closely related to Mnesithea helferi within the subtribe Rottboelliinae. These findings will be beneficial for the classification and identification of the Eremochloa taxa, phylogenetic resolution, novel gene discovery, and functional genomic studies for the genus Eremochloa.

9.
Cancer Sci ; 115(6): 1791-1807, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38480904

RESUMEN

Dissolving the lipid droplets in tissue section with alcohol during a hematoxylin and eosin (H&E) stain causes the tumor cells to appear like clear soap bubbles under a microscope, which is a key pathological feature of clear cell renal cell carcinoma (ccRCC). Mitochondrial dynamics have been reported to be closely associated with lipid metabolism and tumor development. However, the relationship between mitochondrial dynamics and lipid metabolism reprogramming in ccRCC remains to be further explored. We conducted bioinformatics analysis to identify key genes regulating mitochondrial dynamics differentially expressed between tumor and normal tissues and immunohistochemistry and Western blot to confirm. After the target was identified, we created stable ccRCC cell lines to test the impact of the target gene on mitochondrial morphology, tumorigenesis in culture cells and xenograft models, and profiles of lipid metabolism. It was found that mitofusin 2 (MFN2) was downregulated in ccRCC tissues and associated with poor prognosis in patients with ccRCC. MFN2 suppressed mitochondrial fragmentation, proliferation, migration, and invasion of ccRCC cells and growth of xenograft tumors. Furthermore, MFN2 impacted lipid metabolism and reduced the accumulation of lipid droplets in ccRCC cells. MFN2 suppressed disease progression and improved prognosis for patients with ccRCC possibly by interrupting cellular lipid metabolism and reducing accumulation of lipid droplets.


Asunto(s)
Carcinoma de Células Renales , GTP Fosfohidrolasas , Neoplasias Renales , Gotas Lipídicas , Metabolismo de los Lípidos , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Gotas Lipídicas/metabolismo , Ratones Desnudos , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales , Pronóstico
10.
Anal Chem ; 96(31): 12846-12853, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39048518

RESUMEN

Rapid and accurate realization of in situ analysis of deep-sea dissolved gases imperative to the study of ecological geology, oil and gas resource exploration, and global climate change. Herein, we report for the first time the deep-sea dissolved methane (CH4) in situ sensor based on quartz-enhanced photoacoustic and light-induced thermoelastic spectroscopy. The developed sensor system has a volume of φ120 mm × 430 mm and a power consumption of 7.6 W. The sensor, in the manner of frequency division multiplexing, is able to simultaneously measure the photoacoustic signals and light-induced thermoelastic signals, which can accurately correct laser-intensity induced influence on concentration. The spectral response of CH4 concentration varying from 0.01 to 5% is calibrated in detail based on the pressure and temperature in the application environment. The trend of the photoacoustic signal of CH4 at different water molecule (H2O) concentrations is investigated. An Allan variance analysis of several hours demonstrates a minimum detection limit of 0.21 ppm for the CH4 spectrometer. The sensor combined with the gas-liquid separation and enrichment unit is integrated into a compact marine standalone system. Since the specifically designed photoacoustic cell has a volume of only 1.2 mL, the time response for dissolved CH4 detection is reduced to 4 min. Furthermore, the sensor is successfully deployed in the vicinity of the "HaiMa" cold seeps at 1380 m underwater in the South China Sea, completing three consecutive days of measurements of dissolved CH4.

11.
J Virol ; 97(7): e0065623, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37338411

RESUMEN

Mounting evidence suggests that gut microbial composition and its metabolites, including short-chain fatty acids (SCFAs), have beneficial effects in regulating host immunogenicity to vaccines. However, it remains unknown whether and how SCFAs improve the immunogenicity of the rabies vaccine. In this study, we investigated the effect of SCFAs on the immune response to rabies vaccine in vancomycin (Vanco)-treated mice and found that oral gavage with butyrate-producing bacteria (C. butyricum) and butyrate supplementation elevated RABV-specific IgM, IgG, and virus-neutralizing antibodies (VNAs) in Vanco-treated mice. Supplementation with butyrate expanded antigen-specific CD4+ T cells and IFN-γ-secreting cells, augmented germinal center (GC) B cell recruitment, promoted plasma cells (PCs) and RABV-specific antibody-secreting cells (ASCs) generation in Vanco-treated mice. Mechanistically, butyrate enhanced mitochondrial function and activated the Akt-mTOR pathway in primary B cells isolated from Vanco-treated mice, ultimately promoting B lymphocyte-induced maturation protein-1 (Blimp-1) expression and CD138+ PCs generation. These results highlight the important role of butyrate in alleviating Vanco-caused humoral immunity attenuation in rabies-vaccinated mice and maintaining host immune homeostasis. IMPORTANCE The gut microbiome plays many crucial roles in the maintenance of immune homeostasis. Alteration of the gut microbiome and metabolites has been shown to impact vaccine efficacy. SCFAs can act as an energy source for B-cells, thereby promoting both mucosal and systemic immunity in the host by inhibiting HDACs and activation of GPR receptors. This study investigates the impact of orally administered butyrate, an SCFA, on the immunogenicity of rabies vaccines in Vanco-treated mice. The results showed that butyrate ameliorated humoral immunity by facilitating the generation of plasma cells via the Akt-mTOR in Vanco-treated mice. These findings unveil the impact of SCFAs on the immune response of the rabies vaccine and confirm the crucial role of butyrate in regulating immunogenicity to rabies vaccines in antibiotic-treated mice. This study provides a fresh insight into the relationship of microbial metabolites and rabies vaccination.


Asunto(s)
Vacunas Antirrábicas , Rabia , Ratones , Animales , Rabia/prevención & control , Células Plasmáticas , Inmunidad Humoral , Vancomicina/farmacología , Proteínas Proto-Oncogénicas c-akt , Anticuerpos Antivirales , Serina-Treonina Quinasas TOR , Ácidos Grasos Volátiles , Butiratos
12.
Microb Pathog ; 192: 106709, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810766

RESUMEN

This study prepared a novel monoclonal antibody (MAb) against mink enteritis parvovirus (MEV) and identified its antigen epitope. The antibody subclass is identified as IgG1, the titers of the MAb is up to 1:1 × 106 and keeps stably after low-temperature storage for 9 months or 11 passages of the MAb cells. The MAb can specifically recognize MEV in the cells in IFA, but not Aleutian disease virus (ADV) or canine distemper virus (CDV). Its antigen epitope was identified as a polypeptide containing 5 key amino acids (378YAFGR382) and the homology in 20 MEV strains, 4 canine parvovirus strains, and 4 feline panleukopenia virus strains was 100%. This study supplies a biological material for developing new methods to detect MEV.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Virus del Moquillo Canino , Epítopos , Virus de la Enteritis del Visón , Animales , Anticuerpos Monoclonales/inmunología , Epítopos/inmunología , Virus de la Enteritis del Visón/inmunología , Virus del Moquillo Canino/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Visón/inmunología , Inmunoglobulina G/inmunología , Virus de la Enfermedad Aleutiana del Visón/inmunología , Parvovirus Canino/inmunología , Virus de la Panleucopenia Felina/inmunología , Mapeo Epitopo , Ratones , Ratones Endogámicos BALB C , Enteritis Viral del Visón/inmunología
13.
Scand J Gastroenterol ; 59(1): 52-61, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37632275

RESUMEN

PURPOSE: The aim of this study was to develop and externally validate a nomogram to accurately predict the overall survival (OS) of patients with gastric adenocarcinoma who underwent radical gastrectomy. MATERIALS AND METHODS: A total of 3492 patients with gastric adenocarcinoma who underwent radical gastrectomy from 2012 to 2017 were included as the training cohort. Survival analysis was performed via Kaplan Meier method and log-rank test. Independent postoperative prognostic factors in patients with gastric adenocarcinoma were analyzed using univariate and multifactorial COX analysis methods. The prognosis nomogram was established in the training cohort and verified externally in the Surveillance, Epidemiology and End Results (SEER) database. RESULTS: According to the univariate and multifactorial COX analyses, metastatic lymph node ratio (MLNR) and five other independent prognostic factors (age at surgery, type of gastrectomy, tumor size, T stage, and pathological grade) were included in the prognostic nomogram. The nomogram had better prognostic predictive ability than the American Joint Committee on Cancer (AJCC) TNM staging in both the training (C-index: 0.736 VS. 0.668) and external validation cohort (C-index: 0.712 VS. 0.627). The calibration plots showed that the predicted survival rate was in good agreement with the actual survival rate. And the decision curve analysis (DCA) curves revealed that nomogram showed stronger ability in predicting 1-year, 3-year, and 5-year OS. CONCLUSION: This study estimated the excellent prognostic predictive power and clinical application potential of the MLNR-based nomogram, which may be used to facilitate postoperative clinical treatment decisions and potentially improve patient survival outcomes.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Humanos , Nomogramas , Adenocarcinoma/cirugía , Bases de Datos Factuales , Gastrectomía , Periodo Posoperatorio , Neoplasias Gástricas/cirugía , Pronóstico
14.
Fish Shellfish Immunol ; : 109829, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39142373

RESUMEN

As a vital pathway for cellular energy production, mitochondrial fatty acid ß-oxidation (FAO) is essential in regulating immune responses to bacterial pathogens and maintaining intracellular homeostasis in vertebrates. However, the specific role of FAO in antiviral innate immune response in macrophages remains insufficiently understood. In this study, virus infection simulated by poly(I:C) inhibited FAO, as indicated by the reduced expression of FAO-related genes and proteins in the head kidney of large yellow croaker, with similar results observed in poly(I:C)-stimulated macrophages. Then, inhibition of FAO by supplementary mildronate in vivo and etomoxir treatment in vitro revealed varying increases in the mRNA expression of antiviral innate immune response genes after stimulated by poly(I:C) in the head kidney and macrophages. Notably, etomoxir significantly facilitated the transcriptional up-regulation of the IFNh promoter by IRF3. Moreover, inhibiting FAO by knockdown of cpt1b promoted antiviral innate immune response triggered by poly(I:C) in macrophages. Conversely, activating FAO through overexpression of cpt1b or cpt2 significantly reduced the mRNA levels of antiviral response genes in macrophages stimulated by poly(I:C). Unlike etomoxir, cpt1b overexpression inhibited the transcriptional up-regulation of the IFNh promoter by IRF3. Furthermore, in vivo dietary palm oil feeding and in vitro exposure to palmitic acid inhibited the antiviral innate immune response triggered by poly(I:C) in the head kidney and macrophages, respectively. These effects were partly associated with FAO activation, as evidenced by etomoxir. In summary, this study elucidates FAO's critical role in regulating antiviral innate immune response in head kidney macrophages. These findings not only deepen insights into the interaction between metabolic remodeling and host immune responses, but also offer valuable guidance for developing nutritional strategies to improve antiviral immunity in aquaculture.

15.
J Chem Inf Model ; 64(7): 2746-2759, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37982753

RESUMEN

The scientific literature contains valuable information that can be used for future applications, but manual analysis presents challenges due to its size and disciplinary boundaries. The prevailing solution involves natural language processing (NLP) techniques such as information retrieval. Nonetheless, existing automated systems primarily provide either statistically based shallow information or deep information without traceability, thereby falling short of delivering high-quality and reliable insights. To address this, we propose an innovative approach of leveraging sentiment information embedded within the literature to track the opinions toward materials. In this study, we integrated material knowledge into text representation and constructed opinion data sets to hierarchically train deep learning models, named as Scientific Sentiment Network (SSNet). SSNet can effectively extract knowledge from the energy material literature and accurately categorize expert opinions into challenges and opportunities (94% and 92% accuracy, respectively). By incorporating sentiment features determined by SSNet, we can predict the ranking of emerging thermoelectric materials with a 70% correlation to experimental outcomes. Furthermore, our model achieves a commendable 68% accuracy in predicting suitable nanomaterials for atomic layer deposition (ALD) over time. These promising results offer a practical framework to extract and synthesize knowledge from the scientific literature, thereby accelerating research in the field of nanomaterials.


Asunto(s)
Redes Neurales de la Computación , Análisis de Sentimientos , Almacenamiento y Recuperación de la Información
16.
Appl Opt ; 63(16): 4380-4385, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856617

RESUMEN

In this paper, we demonstrate a facile way to prepare polymeric microlens arrays (MLAs) based on a discontinuous wetting surface using a self-assembly technique. A patterned hydrophobic-octadecyltrichlorosilane (OTS) surface was prepared by U V/O 3 irradiation through a shadow mask. The area exposed to U V/O 3 irradiation turned highly hydrophilic, whereas the area protected by the mask remained highly hydrophobic, generating the patterned OTS surface. The surface energy of the OTS/glass surface changed from 23 to 72.8 mN/m after 17 min of U V/O 3 treatment. The scribing of the optical glue-NOA 81 onto the microhole array enabled one to obtain the MLAs due to the generation of the NOA 81 droplet array via the surface tension. After UV light curing, the cured NOA 81 droplet array with uniform dimensions within a large area exhibited excellent MLA characteristics. Moreover, the method developed in this study is simple in operation, low-cost, and requires neither a clean room nor expensive equipment.

17.
Vascular ; : 17085381241254426, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753492

RESUMEN

OBJECTIVE: To investigate the safety and efficacy of endovascular treatment for totally occlusive lesions of the subclavian artery (SCA). METHODS: A retrospective study was performed on 57 patients treated with angioplasty and stenting, including 42 males and 15 females, with an average age of 61.8 years (range: 49 to 81 years). Efficacy, safety, and complications were evaluated. RESULTS: Procedural success was achieved for 47/57 patients and symptoms were relieved. Rat-tail occlusion is the most common type, and all cases were successfully recanalized. Plain type occlusion is less common with a recanalization rate of 55.6%. Hilly and plain occlusions are the main types of stent implantation failure. Through univariate analysis and trend matching analysis, the type of SCA occlusion and surgical approach had statistical significance on the success rate of surgery. The mean follow-up time was 34.6 ± 16.2 months. The cumulative stent patency rates at 1, 3, and 5 years were 95.5%, 86.4%, and 77.3% in the calcified plaque group and 92.0%, 76.0%, and 68.0% in the non-calcified plaque group, respectively. The 3-year and 5-year patency rates in the calcified plaque group were higher than those in the non-calcified plaque group (p < .05). CONCLUSION: Different occlusion types and surgical approaches can affect the surgical success rate. The combined femoral and brachial approach can improve the rate of recanalization of SCA occlusions. The patency rates at 3 and 5 years in the calcified plaque group were higher than those in the non-calcified plaque group.

18.
Mikrochim Acta ; 191(7): 431, 2024 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951263

RESUMEN

A signal amplification electrochemical biosensor chip was developed to integrate loop-mediated isothermal amplification (LAMP) based on in situ nucleic acid amplification and methyl blue (MB) serving as the hybridization redox indicator for sensitive and selective foodborne pathogen detection without a washing step. The electrochemical biosensor chip was designed by a screen-printed carbon electrode modified with gold nanoparticles (Au NPs) and covered with polydimethylsiloxane membrane to form a microcell. The primers of the target were immobilized on the Au NPs by covalent attachment for in situ amplification. The electroactive MB was used as the electrochemical signal reporter and embedded into the double-stranded DNA (dsDNA) amplicons generated by LAMP. Differential pulse voltammetry was introduced to survey the dsDNA hybridization with MB, which differentiates the specifically electrode-unbound and -bound labels without a washing step. Pyrene as the back-filling agent can further improve response signaling by reducing non-specific adsorption. This method is operationally simple, specific, and effective. The biosensor showed a detection linear range of 102-107 CFU mL-1 with the limit of detection of 17.7 CFU mL-1 within 40 min. This method showed promise for on-site testing of foodborne pathogens and could be integrated into an all-in-one device.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Microbiología de Alimentos , Oro , Nanopartículas del Metal , Técnicas de Amplificación de Ácido Nucleico , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Oro/química , Nanopartículas del Metal/química , Límite de Detección , Electrodos , ADN Bacteriano/análisis , ADN Bacteriano/genética , Hibridación de Ácido Nucleico
19.
Sensors (Basel) ; 24(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-39000844

RESUMEN

Aiming to address the issues of missing detailed information, the blurring of significant target information, and poor visual effects in current image fusion algorithms, this paper proposes an infrared and visible-light image fusion algorithm based on discrete wavelet transform and convolutional neural networks. Our backbone network is an autoencoder. A DWT layer is embedded in the encoder to optimize frequency-domain feature extraction and prevent information loss, and a bottleneck residual block and a coordinate attention mechanism are introduced to enhance the ability to capture and characterize the low- and high-frequency feature information; an IDWT layer is embedded in the decoder to achieve the feature reconstruction of the fused frequencies; the fusion strategy adopts the l1-norm fusion strategy to integrate the encoder's output frequency mapping features; a weighted loss containing pixel loss, gradient loss, and structural loss is constructed for optimizing network training. DWT decomposes the image into sub-bands at different scales, including low-frequency sub-bands and high-frequency sub-bands. The low-frequency sub-bands contain the structural information of the image, which corresponds to the important target information, while the high-frequency sub-bands contain the detail information, such as edge and texture information. Through IDWT, the low-frequency sub-bands that contain important target information are synthesized with the high-frequency sub-bands that enhance the details, ensuring that the important target information and texture details are clearly visible in the reconstructed image. The whole process is able to reconstruct the information of different frequency sub-bands back into the image non-destructively, so that the fused image appears natural and harmonious visually. Experimental results on public datasets show that the fusion algorithm performs well according to both subjective and objective evaluation criteria and that the fused image is clearer and contains more scene information, which verifies the effectiveness of the algorithm, and the results of the generalization experiments also show that our network has good generalization ability.

20.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731961

RESUMEN

Recently, the increase in marine temperatures has become an important global marine environmental issue. The ability of energy supply in marine animals plays a crucial role in avoiding the stress of elevated temperatures. The investigation into anaerobic metabolism, an essential mechanism for regulating energy provision under heat stress, is limited in mollusks. In this study, key enzymes of four anaerobic metabolic pathways were identified in the genome of scallop Chlamys farreri, respectively including five opine dehydrogenases (CfOpDHs), two aspartate aminotransferases (CfASTs) divided into cytoplasmic (CfAST1) and mitochondrial subtype (CfAST2), and two phosphoenolpyruvate carboxykinases (CfPEPCKs) divided into a primitive type (CfPEPCK2) and a cytoplasmic subtype (CfPEPCK1). It was surprising that lactate dehydrogenase (LDH), a key enzyme in the anaerobic metabolism of the glucose-lactate pathway in vertebrates, was absent in the genome of scallops. Phylogenetic analysis verified that CfOpDHs clustered according to the phylogenetic relationships of the organisms rather than substrate specificity. Furthermore, CfOpDHs, CfASTs, and CfPEPCKs displayed distinct expression patterns throughout the developmental process and showed a prominent expression in muscle, foot, kidney, male gonad, and ganglia tissues. Notably, CfASTs displayed the highest level of expression among these genes during the developmental process and in adult tissues. Under heat stress, the expression of CfASTs exhibited a general downregulation trend in the six tissues examined. The expression of CfOpDHs also displayed a downregulation trend in most tissues, except CfOpDH1/3 in striated muscle showing significant up-regulation at some time points. Remarkably, CfPEPCK1 was significantly upregulated in all six tested tissues at almost all time points. Therefore, we speculated that the glucose-succinate pathway, catalyzed by CfPEPCK1, serves as the primary anaerobic metabolic pathway in mollusks experiencing heat stress, with CfOpDH3 catalyzing the glucose-opine pathway in striated muscle as supplementary. Additionally, the high and stable expression level of CfASTs is crucial for the maintenance of the essential functions of aspartate aminotransferase (AST). This study provides a comprehensive and systematic analysis of the key enzymes involved in anaerobic metabolism pathways, which holds significant importance in understanding the mechanism of energy supply in mollusks.


Asunto(s)
Glucosa , Respuesta al Choque Térmico , Pectinidae , Filogenia , Animales , Pectinidae/metabolismo , Pectinidae/genética , Glucosa/metabolismo , Respuesta al Choque Térmico/fisiología , Anaerobiosis , Ácido Succínico/metabolismo , Redes y Vías Metabólicas , Aspartato Aminotransferasas/metabolismo , Aspartato Aminotransferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA