Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Small ; 20(6): e2304969, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37771192

RESUMEN

Magnesium-ion batteries are widely studied for its environmentally friendly, low-cost, and high volumetric energy density. In this work, the solvothermal method is used to prepare titanium dioxide bronze (TiO2 -B) nanoflowers with different nickel (Ni) doping concentrations for use in magnesium ion batteries as cathode materials. As Ni doping enhances the electrical conductivity of TiO2 -B and promotes magnesium ion diffusion, the band gap of TiO2 -B host material can be significantly reduced, and as Ni content increases, diffusion contributes more to capacity. According to the electrochemical test, TiO2 -B exhibits excellent electrochemical performance when the Ni element doping content is 2 at% and it is coated with reduced graphene oxide@carbon nanotube (RGO@CNT). At a current density of 100 mA g-1 , NT-2/RGO@CNT discharge specific capacity is as high as 167.5 mAh g-1 , which is 2.36 times of the specific discharge capacity of pure TiO2 -B. It is a very valuable research material for magnesium ion battery cathode materials.

2.
Small ; : e2405565, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39363813

RESUMEN

All-solid-state lithium metal batteries (ASSLMBs) are renowned for their high energy density and safety, positioning them as leading candidates for next-generation energy storage solutions. In this study, pure polymer solid-state electrolytes are developed using the solution casting method, optimized for room temperature operation. The base material, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), is enhanced with succinonitrile (SN) and polyacrylonitrile (PAN) to improve its electrochemical performance at room temperature. The optimized electrolyte, PSP-0.05, demonstrated superior characteristics, including an ionic conductivity (σ) of 3.2 × 10-4 S cm-1 and a wide voltage window of up to 5 V. When integrated into full batteries, PSP-0.05 exhibited exceptional performance in multiplicative cycling tests at room temperature, achieving discharge specific capacities of 132 and 113 mAh g-1 at 3 and 5 C rates, respectively. Additionally, long-term cycling at 1 C rate resulted in an initial discharge-specific capacity of 145.2 mAh g-1 with over 94.9% capacity retention after 1000 cycles. Given the simplicity of the preparation process and its impressive electrochemical properties, the PSP-0.05 electrolyte holds significant potential for practical applications in safer ASSLMBs.

3.
Planta ; 260(1): 5, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777878

RESUMEN

MAIN CONCLUSION: Trace amounts of epibrassinolide (EpiBL) could partially rescue wheat root length inhibition in salt-stressed situation by scavenging ROS, and ectopic expression of TaDWF4 or TaBAK1 enhances root salt tolerance in Arabidopsis by balancing ROS level. Salt stress often leads to ion toxicity and oxidative stress, causing cell structure damage and root development inhibition in plants. While prior research indicated the involvement of exogenous brassinosteroid (BR) in plant responses to salt stress, the precise cytological role and the function of BR in wheat root development under salt stress remain elusive. Our study demonstrates that 100 mM NaCl solution inhibits wheat root development, but 5 nM EpiBL partially rescues root length inhibition by decreasing H2O2 content, oxygen free radical (OFR) content, along with increasing the peroxidase (POD) and catalase (CAT) activities in salt-stressed roots. The qRT-PCR experiment also shows that expression of the ROS-scavenging genes (GPX2 and CAT2) increased in roots after applying BR, especially during salt stress situation. Transcriptional analysis reveals decreased expression of BR synthesis and root meristem development genes under salt stress in wheat roots. Differential expression gene (DEG) enrichment analysis highlights the significant impact of salt stress on various biological processes, particularly "hydrogen peroxide catabolic process" and "response to oxidative stress". Additionally, the BR biosynthesis pathway is enriched under salt stress conditions. Therefore, we investigated the involvement of wheat BR synthesis gene TaDWF4 and BR signaling gene TaBAK1 in salt stress responses in roots. Our results demonstrate that ectopic expression of TaDWF4 or TaBAK1 enhances salt tolerance in Arabidopsis by balancing ROS (Reactive oxygen species) levels in roots.


Asunto(s)
Brasinoesteroides , Homeostasis , Raíces de Plantas , Especies Reactivas de Oxígeno , Tolerancia a la Sal , Esteroides Heterocíclicos , Triticum , Triticum/genética , Triticum/fisiología , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Triticum/efectos de los fármacos , Brasinoesteroides/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/genética , Esteroides Heterocíclicos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Estrés Salino , Estrés Oxidativo , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Catalasa/metabolismo
4.
Theor Appl Genet ; 135(4): 1413-1427, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35187586

RESUMEN

KEY MESSAGE: We developed the ZDX1 high-throughput functional soybean array for high accuracy evaluation and selection of both parents and progeny, which can greatly accelerate soybean breeding. Microarray technology facilitates rapid, accurate, and economical genotyping. Here, using resequencing data from 2214 representative soybean accessions, we developed the high-throughput functional array ZDX1, containing 158,959 SNPs, covering 90.92% of soybean genes and sites related to important traits. By application of the array, a total of 817 accessions were genotyped, including three subpopulations of candidate parental lines, parental lines and their progeny from practical breeding. The fixed SNPs were identified in progeny, indicating artificial selection during the breeding process. By identifying functional sites of target traits, novel soybean cyst nematode-resistant progeny and maturity-related novel sources were identified by allele combinations, demonstrating that functional sites provide an efficient method for the rapid screening of desirable traits or gene sources. Notably, we found that the breeding index (BI) was a good indicator for progeny selection. Superior progeny were derived from the combination of distantly related parents, with at least one parent having a higher BI. Furthermore, new combinations based on good performance were proposed for further breeding after excluding redundant and closely related parents. Genomic best linear unbiased prediction (GBLUP) analysis was the best analysis method and achieved the highest accuracy in predicting four traits when comparing SNPs in genic regions rather than whole genomic or intergenic SNPs. The prediction accuracy was improved by 32.1% by using progeny to expand the training population. Collectively, a versatile assay demonstrated that the functional ZDX1 array provided efficient information for the design and optimization of a breeding pipeline for accelerated soybean breeding.


Asunto(s)
Glycine max , Fitomejoramiento , Alelos , Estudio de Asociación del Genoma Completo , Genotipo , Polimorfismo de Nucleótido Simple , Glycine max/genética
5.
Genomics ; 113(1 Pt 1): 44-56, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33276005

RESUMEN

Neutral/alkaline invertases (N/AINVs) are sucrose hydrolases with important roles in plants. In this study, 15, 15, 15, 29, and 30 N/AINVs were identified in the Gossypium species, G. raimondii, G. herbaceum, G. arboreum, G. hirsutum, and G. barbadense, respectively. Along with two previously discovered branches, α and ß, a new clade γ was first discovered in our study. Investigation of gene collinearity showed that whole-genome duplication (WGD) and polyploidization were responsible for the expansion of the N/AINV gene family in allopolyploid Gossypium. Moreover, expression patterns revealed that GhN/AINV3/13/17/23/24/28 from the ß clade is highly expressed during the period of fiber initiation. The invertase activity of GhN/AINV13 and GhN/AINV23 were confirmed by restoring defects of invertase-deficient yeast mutant SEY2102. Treatments of abiotic stress showed that most GhN/AINVs were induced in response to polyethylene glycol (PEG) or salt stress. A virus-induced gene-silencing (VIGS) experiment and yeast two-hybrid assay demonstrated that GhN/AINV13 may interact with their positive regulators Gh14-3-3 proteins and participate in the fiber initiation or stress tolerance of cotton. Our results provided fundamental information regarding N/AINVs and highlight their potential functions in cotton stress tolerance.


Asunto(s)
Gossypium/genética , Presión Osmótica , Proteínas de Plantas/genética , Estrés Salino , beta-Fructofuranosidasa/genética , Proteínas 14-3-3/metabolismo , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Gossypium/enzimología , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , beta-Fructofuranosidasa/metabolismo
6.
Chem Asian J ; 18(20): e202300542, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37669070

RESUMEN

In recent times, the research on cathode materials for aqueous rechargeable magnesium ion battery has gained significant attention. The focus is on enhancing high-rate performance and cycle stability, which has become the primary research goal. Manganese oxide and its derived Na-Mn-O system have been considered as one of the most promising electrode materials due to its low cost, non-toxicity and stable spatial structure. This work uses hydrothermal method to prepare titanium gradient doped nano sodium manganese oxides, and uses freeze-drying technology to prepare magnesium ion battery cathode materials with high tap density. At the initial current density of 50 mA g-1 , the NMTO-5 material exhibits a high reversible capacity of 231.0 mAh g-1 , even at a current density of 1000 mA g-1 , there is still 122.1 mAh g-1 . It is worth noting that after 180 cycles of charging and discharging at a gradually increasing current density such as 50-1000 mA g-1 , it can still return to the original level after returning to 50 mA g-1 . Excellent electrochemical performance and capacity stability show that NMTO-5 material is a promising electrode material.

7.
Mitochondrial DNA B Resour ; 6(2): 406-407, 2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33628876

RESUMEN

Diachrysia nadeja is a polyphagous herbivorous moth within the family Noctuidae. In this study, we sequenced and analyzed the complete mitochondrial genome (mitogenome) of D. nadeja. This mitogenome was 15,242 bp long and encoded 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs) and 2 ribosomal RNA unit genes (rRNAs). Gene order was conserved and identical to most other previously sequenced Noctuidae. Except for cox1 started with CGA, all other PCGs started with the standard ATN codons. Most of the PCGs terminated with the stop codon TAA, whereas cox1, cox2, and nad4 end with the incomplete codon T-. The whole mitogenome exhibited heavy AT nucleotide bias (80.5%). Phylogenetic analysis showed that D. nadeja got together with three Ctenoplusia species (C. agnata, C. limbirena, and C. albostriata) with high support value, indicating Diachrysia had a closer relationship with Ctenoplusia within Noctuidae.

8.
Front Toxicol ; 3: 627470, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35387178

RESUMEN

The red flour beetle, Tribolium castaneum (T. castaneum), generates great financial losses to the grain storage and food processing industries. Previous studies have shown that essential oil (EO) from Artemisia vulgaris (A. vulgaris) has strong contact toxicity to larvae of the beetle, and odorant-binding proteins (OBPs) contribute to the defense of larvae against A. vulgaris. However, the functions of OBPs in insects defending against plant oil is still not clear. Here, expression of one OBP gene, TcOBPC17, was significantly induced 12-72 h after EO exposure. Furthermore, compared to the control group, RNA interference (RNAi) against TcOBPC17 resulted in a higher mortality rate after EO treatment, which suggests that TcOBPC17 involves in the defense against EO and induces a declining sensitivity to EO. In addition, the tissue expression profile analysis revealed that the expression of TcOBPC17 was more abundant in the metabolic detoxification organs of the head, fat body, epidermis, and hemolymph than in other larval tissue. The expression profile of developmental stages showed that TcOBPC17 had a higher level in early and late adult stages than in other developmental stages. Taken together, these results suggest that TcOBPC17 could participate in the sequestration process of exogenous toxicants in T. castaneum larvae.

9.
Pol J Microbiol ; 70(2): 273-281, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34349816

RESUMEN

To investigate the community structure and diversity of endophytic fungi in the leaves of Artemisia argyi, leaf samples were collected from five A. argyi varieties grown in different cultivation areas in China, namely, Tangyin Beiai in Henan (BA), Qichun Qiai in Hubei (QA), Wanai in Nanyang in Henan (WA), Haiai in Ningbo in Zhejiang (HA), and Anguo Qiai in Anguo in Hebei (AQA), and analyzed using Illumina high-throughput sequencing technology. A total of 365,919 pairs of reads were obtained, and the number of operational taxonomic units for each sample was between 165 and 285. The alpha diversity of the QA and BA samples was higher, and a total of two phyla, eight classes, 12 orders, 15 families, and 16 genera were detected. At the genus level, significant differences were noted in the dominant genera among the samples, with three genera being shared in all the samples. The dominant genus in QA was Erythrobasidium, while that in AQA, HA, and BA was Sporobolomyces, and that in WA was Alternaria, reaching a proportion of 16.50%. These results showed that the fungal community structure and diversity in QA and BA were high. The endophytes are of great importance to the plants, especially for protection, phytohormone and other phytochemical production, and nutrition. Therefore, this study may be significant with the industrial perspective of Artemisia species.


Asunto(s)
Artemisia/microbiología , Biodiversidad , Endófitos/clasificación , Endófitos/fisiología , Micobioma/fisiología , Hojas de la Planta/microbiología , China , Secuenciación de Nucleótidos de Alto Rendimiento
10.
Mitochondrial DNA B Resour ; 5(3): 2224-2225, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33366982

RESUMEN

Chalcidoidea (Hymenoptera) are minute wasps which can attack immature and adult stages of virtually all insect orders. Here, we sequenced and annotated the mitochondrial genome (mitogenome) of Chalcidoidea sp. This mitogenome was 15,152 bp long and encoded 13 protein-coding genes (PCGs), 20 transfer RNA genes (tRNAs), and 2 ribosomal RNA unit genes (rRNAs). All 13 PCGs were initiated by the ATN (ATG, ATT, ATA, and ATC) codon. All PCGs terminate with the stop codons TAA or TAG except for nad4 which ended with the incomplete codon T-. Phylogenetic analysis showed that Chalcidoidea sp. got together with the species Encyrtus infelix and Eurytoma sp., and species in Chalcidoidea formed a sister group to other Cynipoidea and Proctotrupoidea species.

11.
Mitochondrial DNA B Resour ; 5(1): 1073-1074, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33366880

RESUMEN

Trichagalma acutissimae (Monzen) (Hymenoptera: Cynipidae) is a major pest of Quercus variabilis Blume in the Taihang Mountains in China. In this study, we sequenced and analyzed the mitochondrial genome (mitogenome) of T. acutissimae. This mitogenome was 16,078 bp long and encoded 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and 2 ribosomal RNA unit genes (rRNAs). The whole mitogenome exhibited heavy AT nucleotide bias (86.2%). Except for nad4L that started with TTG, all other PCGs started with the standard ATN codon. All 13 PCGs terminate with the stop codon TAA. Phylogenetic analysis showed that T. acutissimae got together with Synergus sp. with high support value, indicating the close relationship of these two genus. All five Cynipoidea species constituted a major clade and formed a sister group to Proctotrupoidea and Chalcidoidea.

12.
Front Physiol ; 11: 819, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982763

RESUMEN

The function of odorant-binding proteins (OBPs) in insect chemodetection has been extensively studied. However, the role of OBPs in the defense of insects against exogenous toxic substances remains elusive. The red flour beetle, Tribolium castaneum, a major pest of stored grains, causes serious economic losses for the agricultural grain and food processing industries. Here, biochemical analysis showed that essential oil (EO) from Artemisia vulgaris, a traditional Chinese medicine, has a strong contact killing effect against larvae of the red flour beetle. Furthermore, one OBP gene, TcOBPC11, was significantly induced after exposure to EO. RNA interference (RNAi) against TcOBPC11 led to higher mortality compared with the controls after EO treatment, suggesting that this OBP gene is associated with defense of the beetle against EO and leads to a decrease in sensitivity to the EO. Tissue expression profiling showed that expression of TcOBPC11 was higher in the fat body, Malpighian tubule, and hemolymph than in other larval tissues, and was mainly expressed in epidermis, fat body, and antennae from the early adult. The developmental expression profile revealed that expression of TcOBPC11 was higher in late larval stages and adult stages than in other developmental stages. These data indicate that TcOBPC11 may be involved in sequestration of exogenous toxicants in the larvae of T. castaneum. Our results provide a theoretical basis for the degradation mechanism of exogenous toxicants and identify potential novel targets for controlling the beetle.

13.
Res Vet Sci ; 92(1): 76-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21075409

RESUMEN

Genetic variation of MHC BLB2 gene exon 2 in Hebei domestic chicken was investigated, after PCR and sequencing of a 374bp fragment (containing entire exon 2 (270bp) of BLB2 gene) in 76 individuals. The results showed that along this fragment, there were 69 variable sites, of which 18 were novel variations, and 82 estimated haplotypes with the diversity of 0.960. In Hebei domestic chicken, the nucleotide diversity (π), the average number of nucleotide differences (k), the average number of nucleotide diversity of synonymous substitution (π(s)) and non-synonymous substitution (π(a)) in BLB2 gene exon 2 were 0.098, 24.688, 0.075, and 0.106, respectively; nine non-synonymous substitutions was exclusively found in the peptide-binding sites (PBS) region of BLB2 gene exon 2, inferring that these unique substitutions might be helpful to resist some special bacteria and pathogens. The higher genetic diversity of MHC BLB2 gene exon 2 in Hebei domestic chicken might be consistent with its more robust disease resistance.


Asunto(s)
Pollos/genética , Exones/genética , Complejo Mayor de Histocompatibilidad/genética , Polimorfismo Genético , Animales , China , Haplotipos , Reacción en Cadena de la Polimerasa/veterinaria , Análisis de Secuencia de ADN/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA