Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Acta Chim Slov ; 63(1): 55-61, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26970789

RESUMEN

Two new potentially tetradentate Schiff base ligands N'-(pyridin-2-ylmethylene)nicotinohydrazide (L1), and N'-(pyridin-2-ylmethylene)isonicotinohydrazide (L(2)) were synthesized. Reactions of hydrazone ligands L(1) and L(2) with Mn(NO(3))(2) afford two mononuclear Mn(II) complexes, [Mn(L(1))(NO(3))(H(2)O)(2)]•(NO(3)) (1) and [Mn(L(2))(2)(NO(3))(H(2)O)]•(NO(3)) (2). For complexes 1 and 2, L(1) and L(2) act as pincer-like tridentate or bidentate ligands, respectively. The Mn(II) ions in the two compounds are both in heptacoordinated environment, while the two molecules display diverse solid-state supramolecular structures because of the different orientation of Npyridine and hydrogen bonding patterns of nitrate anions. Complex 1 features 2D supramolecular sheet, while complex 2 is double-chain supramolecular structure. Both of the two complexes exhibit moderate superoxide dismutase (SOD) mimetic activity.


Asunto(s)
Bases de Schiff/síntesis química , Superóxido Dismutasa/química , Biomimética , Cristalografía por Rayos X , Enlace de Hidrógeno , Bases de Schiff/química , Superóxido Dismutasa/metabolismo
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 271: 120870, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35063824

RESUMEN

Though a number of on-off or off-on fluorescent probes have been developed for the detection of thiophenol by using its unique recognition groups, such as 2, 4-dinitrophenyl ether, 2, 4-dinitrophenyl sulfonamide, and 2, 4-dinitrophenyl sulfonate, up to now, there are few probes that can detect thiophenol by the proportional fluorescence signal. We developed a ratiometric fluorescent probe with coumarin pyridine derivative as fluorophore and 2, 4-dinitrophenyl ether moiety as the sensing unit which could be used to detect thiophenol derivatives by the aromatic nucleophilic substitution reaction. This probe (CPBPN) displayed significant change in fluorescence ratio (256 fold) to result in a more reliable analysis by self-calibration and a relatively low detection limit of 24 nM toward 4-methylthiophenol (MTP) within 30 min to achieve more sensitivity. Besides, the probe was also applied to detect the presence of thiophenol derivatives in actual water samples and fluorescence imaging in living cells. The present work is of great importance for monitoring environmental pollutants and studying their biological function.


Asunto(s)
Colorantes Fluorescentes , Compuestos de Sulfhidrilo , Imagen Óptica , Fenoles/análisis , Compuestos de Sulfhidrilo/análisis
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 260: 119947, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34030037

RESUMEN

A new fluorescent probe (MBT) for the detection of 4-methylbenzenethiol (p-MePhSH) was developed by using 4-(benzo[d]thiazol-2-yl)-3-methoxyphenol as the fluorophore and 2,4-dinitrophenyl ether as the sensing moiety. Probe MBT displayed good selectivity toward p-MePhSH in DMSO/PBS buffer (5/5, v/v) solution and anti-interference over other competitive species via nucleophilic aromatic substitution. The fluorescence intensities of the probe responded p-MePhSH showed a 22-fold enhancement and good linearity with p-MePhSH concentration collected in the range of 0-15 µM. Moreover, the probe is sensitive to p-MePhSH and the limit of detection is 45 nM. The sensing mechanism of probe MBT was verified by high-resolution mass spectrometry and fluorescence lifetime. Furthermore, the probe was used to the detection of p-MePhSH in real water samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA