Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Condens Matter ; 35(28)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37040788

RESUMEN

Strain engineering is an important strategy to modulate the electronic and optical properties of two-dimensional (2D) semiconductors. In experiments, an effective and feasible method to induce strains on 2D semiconductors is the out-of-plane bending. However, in contrast to the in-plane methods, it will generate a combined strain effect on 2D semiconductors, which deserves further explorations. In this work, we theoretically investigate the carrier transport-related electronic properties of arsenene, antimonene, phosphorene, and MoS2under the out-of-plane bending. The bending effect can be disassembled into the in-plane and out-of-plane rolling strains. We find that the rolling always degrades the transport performance, while the in-plane strain could boost carrier mobilities by restraining the intervalley scattering. In other words, pursuing the maximum in-plane strain at the expense of minimum rolling should be the primary strategy to promote transports in 2D semiconductors through bending. Electrons in 2D semiconductors usually suffer from the serious intervalley scattering caused by optical phonons. The in-plane strain can break the crystal symmetry and separate nonequivalent energy valleys at band edges energetically, confining carrier transports at the Brillouin zone Γ point and eliminating the intervalley scattering. Investigation results show that the arsenene and antimonene are suitable for the bending technology, because of their small layer thicknesses which can relieve the rolling burden. Their electron and hole mobilities can be doubled simultaneously, compared with their unstrained 2D structures. From this study, the rules for the out-of-plane bending technology towards promoting transport abilities in 2D semiconductors are obtained.

2.
Foods ; 12(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36981213

RESUMEN

The susceptibility of polyunsaturated fatty acids to oxidation severely limits their application in functional emulsified foods. In this study, the effect of sesamol concentration on the physicochemical properties of WPI-stabilized fish oil emulsions was investigated, focusing on the relationship between sesamol-WPI interactions and interfacial behavior. The results relating to particle size, zeta-potential, microstructure, and appearance showed that 0.09% (w/v) sesamol promoted the formation of small oil droplets and inhibited oil droplet aggregation. Furthermore, the addition of sesamol significantly reduced the formation of hydrogen peroxide, generation of secondary reaction products during storage, and degree of protein oxidation in the emulsions. Molecular docking and isothermal titration calorimetry showed that the interaction between sesamol and ß-LG was mainly mediated by hydrogen bonds and hydrophobic interactions. Our results show that sesamol binds to interfacial proteins mainly through hydrogen bonding, and increasing the interfacial sesamol content reduces the interfacial tension and improves the physical and oxidative stability of the emulsion.

3.
Oncol Lett ; 19(4): 3278-3288, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32256823

RESUMEN

Ovarian cancer (OC) is the fifth most frequent cause of cancer-associated mortality worldwide, and is accompanied by asymptomatic progression. Sirtuins (SIRTs) are a family of nicotinamide adenine dinucleotide-dependent protein deacetylases, comprising seven members (SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6 and SIRT7). Accumulating evidence has demonstrated that SIRTs act as prognostic estimators in certain types of cancer such as lung cancer, prostate cancer, gastric cancer, breast cancer and colorectal cancer. However, it remains unknown whether individual SIRTs can serve as independent prognostic factors in OC. In the present study, the Kaplan-Meier plotter online database was utilized to examine the prognostic values of SIRT mRNA expression in patients with OC. The results demonstrated that the overexpression of SIRT3, SIRT5, SIRT6 and SIRT7 mRNAs was associated with a good prognosis in patients, whereas elevated mRNA levels of SIRT1 and SIRT4 indicated poor survival in patients with OC. In addition, among the favorable predictors, SIRT3, SIRT5, SIRT6 and SIRT7 overexpression were associated with overall survival (OS), according to clinical characteristics, such as histological classification, clinical stage, pathology grade, drug therapy and tumor protein p53 mutation status in patients with OC. Similarly, SIRT4 mRNA overexpression was associated with poor OS in pathological grade III cancer. High SIRT1 and SIRT4 expression were associated with unfavorable OS at all clinical stages. Furthermore, SIRT1 and SIRT4 were negatively associated with OS in drug-treated patients. In summary, the present study demonstrated that the SIRT family is associated with the prognosis of human OC, suggesting that individual SIRTs may also act as prognostic predictors in patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA