Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 729
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(13): 2213-2233.e25, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35750033

RESUMEN

The impact of apolipoprotein E ε4 (APOE4), the strongest genetic risk factor for Alzheimer's disease (AD), on human brain cellular function remains unclear. Here, we investigated the effects of APOE4 on brain cell types derived from population and isogenic human induced pluripotent stem cells, post-mortem brain, and APOE targeted replacement mice. Population and isogenic models demonstrate that APOE4 local haplotype, rather than a single risk allele, contributes to risk. Global transcriptomic analyses reveal human-specific, APOE4-driven lipid metabolic dysregulation in astrocytes and microglia. APOE4 enhances de novo cholesterol synthesis despite elevated intracellular cholesterol due to lysosomal cholesterol sequestration in astrocytes. Further, matrisome dysregulation is associated with upregulated chemotaxis, glial activation, and lipid biosynthesis in astrocytes co-cultured with neurons, which recapitulates altered astrocyte matrisome signaling in human brain. Thus, APOE4 initiates glia-specific cell and non-cell autonomous dysregulation that may contribute to increased AD risk.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Astrocitos/metabolismo , Colesterol/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Microglía/metabolismo
2.
Nat Immunol ; 24(11): 1854-1866, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857825

RESUMEN

Microglial involvement in Alzheimer's disease (AD) pathology has emerged as a risk-determining pathogenic event. While apolipoprotein E (APOE) is known to modify AD risk, it remains unclear how microglial apoE impacts brain cognition and AD pathology. Here, using conditional mouse models expressing apoE isoforms in microglia and central nervous system-associated macrophages (CAMs), we demonstrate a cell-autonomous effect of apoE3-mediated microglial activation and function, which are negated by apoE4. Expression of apoE3 in microglia/CAMs improves cognitive function, increases microglia surrounding amyloid plaque and reduces amyloid pathology and associated toxicity, whereas apoE4 expression either compromises or has no effects on these outcomes by impairing lipid metabolism. Single-cell transcriptomic profiling reveals increased antigen presentation and interferon pathways upon apoE3 expression. In contrast, apoE4 expression downregulates complement and lysosomal pathways, and promotes stress-related responses. Moreover, in the presence of mouse endogenous apoE, microglial apoE4 exacerbates amyloid pathology. Finally, we observed a reduction in Lgals3-positive responsive microglia surrounding amyloid plaque and an increased accumulation of lipid droplets in APOE4 human brains and induced pluripotent stem cell-derived microglia. Our findings establish critical isoform-dependent effects of microglia/CAM-expressed apoE in brain function and the development of amyloid pathology, providing new insight into how apoE4 vastly increases AD risk.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Microglía/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Encéfalo , Homeostasis , Ratones Transgénicos
3.
Cell ; 182(1): 245-261.e17, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32649877

RESUMEN

Genomic studies of lung adenocarcinoma (LUAD) have advanced our understanding of the disease's biology and accelerated targeted therapy. However, the proteomic characteristics of LUAD remain poorly understood. We carried out a comprehensive proteomics analysis of 103 cases of LUAD in Chinese patients. Integrative analysis of proteome, phosphoproteome, transcriptome, and whole-exome sequencing data revealed cancer-associated characteristics, such as tumor-associated protein variants, distinct proteomics features, and clinical outcomes in patients at an early stage or with EGFR and TP53 mutations. Proteome-based stratification of LUAD revealed three subtypes (S-I, S-II, and S-III) related to different clinical and molecular features. Further, we nominated potential drug targets and validated the plasma protein level of HSP 90ß as a potential prognostic biomarker for LUAD in an independent cohort. Our integrative proteomics analysis enables a more comprehensive understanding of the molecular landscape of LUAD and offers an opportunity for more precise diagnosis and treatment.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Proteómica , Adenocarcinoma del Pulmón/genética , Pueblo Asiatico/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Sistemas de Liberación de Medicamentos , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad , Mutación/genética , Estadificación de Neoplasias , Fosfoproteínas/metabolismo , Análisis de Componente Principal , Pronóstico , Proteoma/metabolismo , Resultado del Tratamiento , Proteína p53 Supresora de Tumor/genética
4.
Cell ; 172(4): 841-856.e16, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29395328

RESUMEN

Carcinoma-associated fibroblasts (CAFs) are abundant and heterogeneous stromal cells in tumor microenvironment that are critically involved in cancer progression. Here, we demonstrate that two cell-surface molecules, CD10 and GPR77, specifically define a CAF subset correlated with chemoresistance and poor survival in multiple cohorts of breast and lung cancer patients. CD10+GPR77+ CAFs promote tumor formation and chemoresistance by providing a survival niche for cancer stem cells (CSCs). Mechanistically, CD10+GPR77+ CAFs are driven by persistent NF-κB activation via p65 phosphorylation and acetylation, which is maintained by complement signaling via GPR77, a C5a receptor. Furthermore, CD10+GPR77+ CAFs promote successful engraftment of patient-derived xenografts (PDXs), and targeting these CAFs with a neutralizing anti-GPR77 antibody abolishes tumor formation and restores tumor chemosensitivity. Our study reveals a functional CAF subset that can be defined and isolated by specific cell-surface markers and suggests that targeting the CD10+GPR77+ CAF subset could be an effective therapeutic strategy against CSC-driven solid tumors.


Asunto(s)
Transformación Celular Neoplásica/inmunología , Resistencia a Antineoplásicos/inmunología , Fibroblastos/inmunología , Neoplasias/inmunología , Células Madre Neoplásicas/inmunología , Neprilisina/inmunología , Receptores de Quimiocina/inmunología , Microambiente Tumoral/inmunología , Células A549 , Transformación Celular Neoplásica/patología , Fibroblastos/patología , Humanos , Células MCF-7 , Proteínas de Neoplasias/inmunología , Neoplasias/patología , Células Madre Neoplásicas/patología , Receptor de Anafilatoxina C5a
5.
Nature ; 586(7831): 735-740, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32879487

RESUMEN

Innate immunity is associated with Alzheimer's disease1, but the influence of immune activation on the production of amyloid-ß is unknown2,3. Here we identify interferon-induced transmembrane protein 3 (IFITM3) as a γ-secretase modulatory protein, and establish a mechanism by which inflammation affects the generation of amyloid-ß. Inflammatory cytokines induce the expression of IFITM3 in neurons and astrocytes, which binds to γ-secretase and upregulates its activity, thereby increasing the production of amyloid-ß. The expression of IFITM3 is increased with ageing and in mouse models that express familial Alzheimer's disease genes. Furthermore, knockout of IFITM3 reduces γ-secretase activity and the formation of amyloid plaques in a transgenic mouse model (5xFAD) of early amyloid deposition. IFITM3 protein is upregulated in tissue samples from a subset of patients with late-onset Alzheimer's disease that exhibit higher γ-secretase activity. The amount of IFITM3 in the γ-secretase complex has a strong and positive correlation with γ-secretase activity in samples from patients with late-onset Alzheimer's disease. These findings reveal a mechanism in which γ-secretase is modulated by neuroinflammation via IFITM3 and the risk of Alzheimer's disease is thereby increased.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Inmunidad Innata , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo , Edad de Inicio , Anciano de 80 o más Años , Envejecimiento/genética , Envejecimiento/inmunología , Envejecimiento/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/química , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Astrocitos/metabolismo , Dominio Catalítico , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Inflamación , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Presenilina-1/metabolismo , Proteínas de Unión al ARN/genética , Riesgo , Regulación hacia Arriba
6.
Ann Neurol ; 96(3): 608-624, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38877824

RESUMEN

OBJECTIVE: The aim of this study was to explore the pathogenesis of CLCN6-related disease and to assess whether its Cl-/H+-exchange activity is crucial for the biological role of ClC-6. METHODS: We performed whole-exome sequencing on a girl with development delay, intractable epilepsy, behavioral abnormities, retinal dysfunction, progressive brain atrophy, suggestive of neuronal ceroid lipofuscinoses (NCLs). We generated and analyzed the first knock-in mouse model of a patient variant (p.E200A) and compared it with a Clcn6-/- mouse model. Additional functional tests were performed with heterologous expression of mutant ClC-6. RESULTS: We identified a de novo heterozygous p.E200A variant in the proband. Expression of disease-causing ClC-6E200A or ClC-6Y553C mutants blocked autophagic flux and activated transcription factors EB (TFEB) and E3 (TFE3), leading to autophagic vesicle and cholesterol accumulation. Such alterations were absent with a transport-deficient ClC-6E267A mutant. Clcn6E200A/+ mice developed severe neurodegeneration with typical features of NCLs. Mutant ClC-6E200A, but not loss of ClC-6 in Clcn6-/- mice, increased lysosomal biogenesis by suppressing mTORC1-TFEB signaling, blocked autophagic flux through impairing lysosomal function, and increased apoptosis. Carbohydrate and lipid deposits accumulated in Clcn6E200A/+ brain, while only lipid storage was found in Clcn6-/- brain. Lysosome dysfunction, autophagy defects, and gliosis were early pathogenic events preceding neuron loss. INTERPRETATION: CLCN6 is a novel genetic cause of NCLs, highlighting the importance of considering CLCN6 mutations in the diagnostic workup for molecularly undefined forms of NCLs. Uncoupling of Cl- transport from H+ countertransport in the E200A mutant has a dominant effect on the autophagic/lysosomal pathway. ANN NEUROL 2024;96:608-624.


Asunto(s)
Canales de Cloruro , Modelos Animales de Enfermedad , Mutación , Lipofuscinosis Ceroideas Neuronales , Animales , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Canales de Cloruro/genética , Ratones , Femenino , Humanos , Mutación/genética , Autofagia/genética , Secuenciación del Exoma , Proteínas de la Membrana
7.
Anal Chem ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283703

RESUMEN

Colorimetric assays have been extensively investigated for biosensing applications due to their advantages of visual recognizability, ease of use, and low cost. However, advancing their development is a great challenge due to the inherent limitations of colorimetric dyes. Herein, we report a strategy to assemble dyes in covalent organic frameworks (COFs) to effectively reinforce the applicability of pH-responsive dyes in colorimetric bioassays. Experimental results reveal that three-dimensional COFs can promote the assembly of dyes through hydrogen bonding, resulting in the formation of a dye-supermolecule@COF assembly. Consequently, when sensitized at increased pH levels (e.g., hydroxyl ions), disruption of hydrogen bonds may trigger a rapid transition from their insoluble fixed state within the COFs into soluble, visibly detectable dye anions. This process can also be facilitated by increased hydrophilicity and elevated electrostatic repulsion between the dye anions and COFs, leading to the substantial release of chromogenic dye anions from the COF pores into the solution, thereby amplifying the colorimetric signal output. Therefore, by employing various synthesized dye-supermolecule@COFs as signal tags, we developed a colorimetric bioassay capable of accurately identifying breast cancer cell subtypes. This study not only highlights the effectiveness of dye-supermolecule@COFs in enhancing colorimetric biosensing but also underscores the potential of employing the COF-mediated dye assembly strategy for colorimetric assays.

8.
Anal Chem ; 96(32): 13086-13095, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39072614

RESUMEN

The OPECT biosensing platform, which connects optoelectronics and biological systems, offers significant amplification and more possibilities for research in biological applications. In this work, a homogeneous organic photoelectrochemical transistor (OPECT) biosensor based on a Bi2S3/Bi2MoO6 heterojunction was constructed to detect METTL3/METTL14 protein activity. The METTL3/METTL14 complex enzyme was used to catalyze adenine (A) on an RNA strand to m6A, protecting m6A-RNA from being cleaved by an E. coli toxin (MazF). Alkaline phosphatase (ALP) catalyzed the conversion of Na3SPO3 to H2S through an enzymatic reaction. Due to the adoption of the strategy of no fixation on the electrode, the generated H2S was easy to diffuse to the surface of the ITO electrode. The Bi2S3/Bi2MoO6 heterojunction was formed in situ through a chemical replacement reaction with Bi2MoO6, improving photoelectric conversion efficiency and realizing signal amplification. Based on this "signal on" mode, METTL3/METTL14 exhibited a wide linear range (0.00001-25 ng/µL) between protein concentration and photocurrent intensity with a limit of detection (LOD) of 7.8 fg/µL under optimal experimental conditions. The applicability of the developed method was evaluated by investigating the effect of four plasticizers on the activity of the METTL3/METTL14 protein, and the molecular modeling technique was employed to investigate the interaction between plasticizers and the protein.


Asunto(s)
Técnicas Biosensibles , Bismuto , Técnicas Electroquímicas , Metiltransferasas , Molibdeno , Sulfuros , Metiltransferasas/metabolismo , Metiltransferasas/química , Bismuto/química , Sulfuros/química , Molibdeno/química , Procesos Fotoquímicos , Humanos , Transistores Electrónicos , Adenosina/análisis , Adenosina/análogos & derivados
9.
Small ; 20(14): e2306406, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990371

RESUMEN

Interface engineering attracted tremendous attention owing to its remarkable ability to impede dendrite growth and side reactions in aqueous zinc-ion batteries. Artificial interface layers composed of crystalline materials have been extensively employed to stabilize the Zn anode. However, the diffusion kinetics of Zn2+ in highly crystalline materials are hindered by steric effects from the lattice, thereby limiting the high-rate performance of the cell. Here, defect-rich HfO2-x polycrystals derived from metal-organic frameworks (MOFs) (D-HfO2-x) are developed to enhance the Zn deposition behavior. The discrepancy of dielectric constants between metallic Zn and HfO2 enables the building of an electrostatic shielding layer for uniform Zn deposition. More importantly, the oxygen vacancies in D-HfO2-x provide abundant active sites for Zn2+ adsorption, accelerating the kinetics of Zn2+ migration, which contributes to the preferential exposure of the Zn (002) plane during plating. Consequently, the D-HfO2-x-modified Zn anode delivers ultrastable durability of over 5000 h at 1 mA cm-2 and a low voltage hysteresis of 30 mV. The constructed defective coating provides a guarantee for the stable operation of Zn anodes, and the innovative approach of defective engineering also offers new ideas for the protection of other energy storage devices.

10.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36637188

RESUMEN

MOTIVATION: Accurately predicting cancer survival is crucial for helping clinicians to plan appropriate treatments, which largely improves the life quality of cancer patients and spares the related medical costs. Recent advances in survival prediction methods suggest that integrating complementary information from different modalities, e.g. histopathological images and genomic data, plays a key role in enhancing predictive performance. Despite promising results obtained by existing multimodal methods, the disparate and heterogeneous characteristics of multimodal data cause the so-called modality gap problem, which brings in dramatically diverse modality representations in feature space. Consequently, detrimental modality gaps make it difficult for comprehensive integration of multimodal information via representation learning and therefore pose a great challenge to further improvements of cancer survival prediction. RESULTS: To solve the above problems, we propose a novel method called cross-aligned multimodal representation learning (CAMR), which generates both modality-invariant and -specific representations for more accurate cancer survival prediction. Specifically, a cross-modality representation alignment learning network is introduced to reduce modality gaps by effectively learning modality-invariant representations in a common subspace, which is achieved by aligning the distributions of different modality representations through adversarial training. Besides, we adopt a cross-modality fusion module to fuse modality-invariant representations into a unified cross-modality representation for each patient. Meanwhile, CAMR learns modality-specific representations which complement modality-invariant representations and therefore provides a holistic view of the multimodal data for cancer survival prediction. Comprehensive experiment results demonstrate that CAMR can successfully narrow modality gaps and consistently yields better performance than other survival prediction methods using multimodal data. AVAILABILITY AND IMPLEMENTATION: CAMR is freely available at https://github.com/wxq-ustc/CAMR. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Neoplasias , Humanos , Genoma
11.
Opt Lett ; 49(12): 3288-3291, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38875602

RESUMEN

The 3D structured light field manipulated by a digital-micromirror-device (DMD)-based digital hologram has demonstrated its superiority in fast-fabricating stereo nanostructures. However, this technique intrinsically suffers from defects of light intensity in generating modulated focal spots, which prevents from achieving high-precision micro/nanodevices. In this Letter, we have demonstrated a compensation approach based on adapting spatial voxel density for fabricating optical metalenses with ultrahigh precision. The modulated focal spot experiences intensity fluctuations of up to 3% by changing the spatial position, leading to a 20% variation of the structural dimension in fabrication. By altering the voxel density to improve the uniformity of the laser cumulative exposure dosage over the fabrication region, we achieved an increased dimensional uniformity from 94.4% to 97.6% in fabricated pillars. This approach enables fast fabrication of metalenses capable of sub-diffraction focusing of 0.44λ/NA with the increased mainlobe-sidelobe ratio from 1:0.34 to 1:0.14. A 6 × 5 supercritical lens array is fabricated within 2 min, paving a way for the fast fabrication of large-scale photonic devices.

12.
Int Arch Allergy Immunol ; : 1-10, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106836

RESUMEN

INTRODUCTION: Asthma is associated with upper airway diseases and allergic diseases; however, the causal effects need to be investigated further. Thus, we performed this two-sample Mendelian randomization (MR) analysis to explore and measure the causal effects of asthma on allergic rhinitis (AR), vasomotor rhinitis (VMR), allergic conjunctivitis (AC), atopic dermatitis (AD), and allergic urticaria (AU). METHODS: The data for asthma, AR, VMR, AC, AD, and AU were obtained from large-scale genome-wide association studies summarized recently. We defined single-nucleotide polymorphisms satisfying the MR assumptions as instrumental variables. Inverse-variance weighted (IVW) approach under random-effects was applied as the dominant method for causal estimation. The weighted median approach, MR-Egger regression analysis, MR pleiotropy residual sum and outlier test, and leave-one-out sensitivity analysis were performed as sensitivity analysis. Horizontal pleiotropy was measured using MR-Egger regression analysis. Significant causal effects were attempted for replication and meta-analysis. RESULTS: We revealed that asthma had causal effects on AR (IVW, odds ratio [OR] = 1.93; 95% confidence interval [CI], 1.74-2.14; p < 0.001), VMR (IVW, OR = 1.40; 95% CI, 1.15-1.71; p < 0.001), AC (IVW, OR = 1.65; 95% CI, 1.49-1.82; p < 0.001), and AD (IVW, OR = 2.13; 95% CI, 1.82-2.49; p < 0.001). No causal effect of asthma on AU was observed. Sensitivity analysis further assured the robustness of these results. The evaluation of the replication stage and meta-analysis further confirmed the causal effect of asthma on AR (IVW OR = 1.81, 95% CI 1.62-2.02, p < 0.001), AC (IVW OR = 1.44, 95% CI 1.11-1.87, p < 0.001), and AD (IVW OR = 1.85, 95% CI 1.42-2.41, p < 0.001). CONCLUSIONS: We revealed and quantified the causal effects of asthma on AR, VMR, AC, and AD. These findings can provide powerful causal evidence of asthma on upper airway diseases and allergic diseases, suggesting that the treatment of asthma should be a preventive and therapeutic strategy for AR, VMR, AC, and AD.

13.
Horm Metab Res ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38588699

RESUMEN

This study aims to establish a random forest model for detecting the severity of Graves Orbitopathy (GO) and identify significant classification factors. This is a hospital-based study of 199 patients with GO that were collected between December 2019 and February 2022. Clinical information was collected from medical records. The severity of GO can be categorized as mild, moderate-to-severe, and sight-threatening GO based on guidelines of the European Group on Graves' orbitopathy. A random forest model was constructed according to the risk factors of GO and the main ocular symptoms of patients to differentiate mild GO from severe GO and finally was compared with logistic regression analysis, Support Vector Machine (SVM), and Naive Bayes. A random forest model with 15 variables was constructed. Blurred vision, disease course, thyroid-stimulating hormone receptor antibodies, and age ranked high both in mini-decreased gini and mini decrease accuracy. The accuracy, positive predictive value, negative predictive value, and the F1 Score of the random forest model are 0.83, 0.82, 0.86, and 0.82, respectively. Compared to the three other models, our random forest model showed a more reliable performance based on AUC (0.85 vs. 0.83 vs. 0.80 vs. 0.76) and accuracy (0.83 vs. 0.78 vs. 0.77 vs. 0.70). In conclusion, this study shows the potential for applying a random forest model as a complementary tool to differentiate GO severity.

14.
Inorg Chem ; 63(9): 4373-4384, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38376825

RESUMEN

Efficient and durable bifunctional catalysts toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are urgently desirable but challenging for rechargeable Zn-air batteries (ZABs), especially flexible wearable ZABs. Inspired by the vine-leaf-whisker structure in nature, we proposed a three-dimensional (3D) hierarchical bifunctional catalyst (denoted as Co-Fe-Zn@N-CNT/CNF) consisting of N-doped carbon nanotubes embedded with abundant CoFe alloy nanoparticles, leaf-shaped N-doped carbon nanoflakes, and porous carbon fibers for rechargeable ZABs. The special biomimetic structure provides a large specific surface area, allowing for high exposure of the active site and ensuring fast mass transport/charge transfer. The close combination of CoFe bimetallic alloys and N-doped carbon nanotubes delivers high electrocatalytic activity, while the coexistence of various active sites such as metal nanoparticles (NPs), metal-Nx, doped N species, and their synergistic interactions endows the catalysts with more active sites. As such, the Co-Fe-Zn@N-CNT/CNF catalyst achieves superior bifunctional catalytic activities for the ORR (a half-wave potential of 0.84 V) and the OER (an overpotential of 326 mV at 10 mA cm-2) in alkaline media, comparable to commercial Pt/C and RuO2. Remarkably, both aqueous and solid-state ZABs assembled with Co-Fe-Zn@N-CNT/CNF catalysts as air electrodes demonstrate excellent charging/discharging performance, high peak power density, and robust long-term cycling stability. More interestingly, the flexible ZAB performs well even under bending conditions, displaying satisfactory device stability and mechanical flexibility. This study presents a new collective morphological-composition-structural engineering strategy for exploiting the efficient bifunctional oxygen electrocatalysts, which is of great significance for high-performance rechargeable ZABs and wearable energy storage devices.

15.
Nutr Metab Cardiovasc Dis ; 34(9): 2217-2225, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38866609

RESUMEN

BACKGROUND AND AIMS: Limited evidence exist regarding the association between ongericimab, a novel recombinant humanized anti-PCSK9 monoclonal antibody, and primary hypercholesterolemia and mixed dyslipidemia. This study aimed to evaluate the efficacy and safety of ongericimab administered by prefilled syringe (PFS) or autoinjector (AI) in Chinese patients with primary hypercholesterolemia and mixed dyslipidemia on stable optimized lipid-lowering therapy. METHODS AND RESULTS: A total of 255 patients on stable optimized lipid-lowering therapy were randomized in a 2:1:2:1 ratio to receive PFS for the subcutaneous injection of ongericimab 150 mg every 2 weeks (Q2W) or a matching placebo, or AI for the subcutaneous injection of ongericimab 150 mg Q2W or a matching placebo. The primary efficacy endpoint was the percent change in low-density lipoprotein cholesterol (LDL-C) levels from baseline to week 12. Safety was also evaluated. At week 12, the least squares mean percent changes were -72.7% (3.9%) for PFS and -71.1% (3.8%) for AI (all P < 0.001) compared to respective matching placebo groups. Beneficial effects were also seen for all secondary lipid parameters, notably with robust reduction in Lp (a). Treatment-emergent adverse events (TEAEs) and serious AEs with ongericimab were reported in 46.2% and 2.4% of patients, compared to 44.2% and 3.5% with placebo. CONCLUSION: In Chinese patients with primary hypercholesterolemia and mixed dyslipidemia, a 12-week treatment regimen with ongericimab administered by PFS or AI significantly reduced LDL-C and other lipid parameters, proving to be safe and well tolerated. Patients experienced consistent effects from PFS or AI devices. CLINICAL TRIAL REGISTRATION: CTR20220027; January 11, 2022; http://www.chinadrugtrials.org.cn/index.html.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Biomarcadores , LDL-Colesterol , Hipercolesterolemia , Inhibidores de PCSK9 , Jeringas , Humanos , Masculino , Femenino , Persona de Mediana Edad , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/sangre , Hipercolesterolemia/diagnóstico , Resultado del Tratamiento , China , LDL-Colesterol/sangre , Inyecciones Subcutáneas , Anciano , Factores de Tiempo , Biomarcadores/sangre , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/administración & dosificación , Método Doble Ciego , Anticolesterolemiantes/efectos adversos , Anticolesterolemiantes/administración & dosificación , Adulto , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/diagnóstico , Hiperlipidemias/sangre , Proproteína Convertasa 9
16.
Can J Physiol Pharmacol ; 102(2): 137-149, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37748205

RESUMEN

RAD54B belongs to the SNF2/SWI2 superfamily, participating in homologous recombination repair. DNA damage is the central driver of aging, but there is no direct evidence of an association between RAD54B and vascular aging. The present study sought to investigate the role and mechanisms of RAD54B in endothelial senescence. In senescent animal models, including spontaneously hypertensive rats, normal aging mice, and D-gal-induced senescent mice, and senescent cell models induced by H2O2, D-gal, and culture, RAD54B was remarkably downregulated. Knockdown of RAD54B increased the expression of p53 and p21, increased the ratio of SA-ß-gal-positive cells, and decreased the proportion of EdU-positive cells. Conversely, overexpression of RAD54B reversed the senescent phenotypes stimulated by H2O2 and delayed replicative endothelial senescence. Mechanistically, silencing RAD54B compensatorily increased the expression of RAD51/XRCC4, which remained unchanged in H2O2-induced senescence. RAD54B lacking the SNF2 domain could still reverse the increasing expression of p53/p21 induced by H2O2. RAD54B reduced γH2A.X expression and inhibited the expression and phosphorylation of CHK1. In conclusion, RAD54B exerts a direct protective effect against DNA damage through enhancing homologous recombination repair in endothelial senescence, resulting in inhibition of the downstream CHK1/p53/p21 pathway, suggesting that RAD54B may be a potential therapeutic target for vascular aging-associated diseases.


Asunto(s)
Senescencia Celular , Proteína p53 Supresora de Tumor , Ratones , Animales , Proteína p53 Supresora de Tumor/metabolismo , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/metabolismo , Envejecimiento/metabolismo , Endotelio Vascular/metabolismo
17.
Graefes Arch Clin Exp Ophthalmol ; 262(6): 1919-1924, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38294512

RESUMEN

PURPOSE: Dysthyroid optic neuropathy (DON) leads to vision loss. This study aimed to investigate a new method that can directly evaluate the change in muscle cone inner volume (MCIV) and distinguish DON orbits from non-DONs. MATERIALS AND METHODS: This study included 54 patients (108 orbits) who were diagnosed with thyroid eye disease and treated at the Beijing Tongren Hospital between December 2019 and September 2021. The extraocular muscle volume (EOMV), orbital fat volume (OFV), and bony orbit volume (BOV) of the patients were measured using three-dimensional reconstruction. MCIV was measured using artificially defined boundaries. The associations between these volumes and clinical indicators were studied, and the diagnostic efficacy of these volumes for DON was described using receiver operating characteristic (ROC) curves. RESULTS: The ROC curve showed that the area under the curve of MCIV/BOV (%) combined with EOMV/BOV (%) reached 0.862 (p < 0.001), with a sensitivity of 85.7% and a specificity of 76.1%. CONCLUSION: The combination of MCIV/BOV (%) and EOMV/BOV (%) is a good indicator for the diagnosis of DON, which aids in the early detection and intervention of DON.


Asunto(s)
Oftalmopatía de Graves , Imagenología Tridimensional , Músculos Oculomotores , Enfermedades del Nervio Óptico , Órbita , Curva ROC , Humanos , Masculino , Femenino , Persona de Mediana Edad , Oftalmopatía de Graves/diagnóstico , Oftalmopatía de Graves/cirugía , Enfermedades del Nervio Óptico/diagnóstico , Órbita/diagnóstico por imagen , Estudios Retrospectivos , Músculos Oculomotores/cirugía , Músculos Oculomotores/fisiopatología , Adulto , Anciano , Tomografía Computarizada por Rayos X/métodos
18.
Artif Organs ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39275859

RESUMEN

BACKGROUND: The artificial anal sphincter is a device used to treat patients with fecal incontinence who are unable to control their bowel movements on their own. Long-term morphological changes in the tissue surrounding the artificial anal sphincter can cause biomechanical compatibility problems, which seriously affect the clinical application of the artificial anal sphincter. METHODS: In this paper, the superelasticity of shape memory alloys was utilized to design and fabricate a biomechanically compatible constant force clamping artificial anal sphincter. An in vitro simulation system was constructed to verify the effectiveness, safety, and constant force characteristics of the artificial anal sphincter. RESULTS: The experimental results demonstrated that the artificial anal sphincter could be effectively closed with no leakage of the liquid-like intestinal contents, which are most likely to leak. The pressure of the artificial anal sphincter on the intestinal tube gradually increased and eventually became constant during closure, and the pressure value was always less than the intestinal blood supply pressure threshold. CONCLUSIONS: In this paper, we designed an artificial anal sphincter based on biomechanical compatibility and the corresponding in vitro simulation experimental program and preliminarily verified the effectiveness, safety, and constant force characteristics of the artificial anal sphincter.

19.
Phytochem Anal ; 35(2): 409-418, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37872850

RESUMEN

INTRODUCTION: Panax ginseng and Panax quinquefolium are traditional Chinese herb medicines and similar in morphology and some chemical components but differ in drug properties, so they cannot be mixed. However, the processed products of them are often sold in the form of slices, powder, and capsules, which are difficult to identify by traditional morphological methods. Furthermore, an accurate evaluation of P. ginseng, P. quinquefolium and the processed products have not been conducted. OBJECTIVE: This study aimed to establish a catalysed hairpin assembly (CHA) identification method for authenticating products made from P. ginseng and P. quinquefolium based on single nucleotide polymorphism (SNP) differences. METHOD: By analysing the differences of SNP in internal transcribed spacer 2 (ITS2) in P. ginseng and P. quinquefolium to design CHA-specific hairpins. Establish a sensitive and efficient CHA method that can identify P. ginseng and P. quinquefolium, use the sequencing technology to verify the accuracy of this method in identifying Panax products, and compare this method with high-resolution melting (HRM). RESULTS: The reaction conditions of CHA were as follows: the ratio of forward and reverse primers, 20:1; hairpin concentration, 5 ng/µL. Compared with capillary electrophoresis, this method had good specificity and the limit of detection was 0.5 ng/µL. The result of Panax product identification with CHA method were coincidence with that of the sequencing method; the positive rate of CHA reaction was 100%. CONCLUSION: This research presents an effective identification method for authenticating P. ginseng and P. quinquefolium products, which is helpful to improve the quality of Panax products.


Asunto(s)
Panax , Panax/genética , Panax/química , Medicina Tradicional China , Polimorfismo de Nucleótido Simple , Tecnología
20.
J Craniofac Surg ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207131

RESUMEN

PURPOSE: This study aims to analyze the literature on periocular basal cell carcinoma, identify research trends, and offer insights into future research areas in this field to assist clinicians and researchers. METHODS: 903 publications on periocular basal cell carcinoma were collected from the Web of Science Core Collection database. We assessed the contributions from various countries, institutions, journals, and authors, and performed network analysis using Excel, VOSviewer, and R Studio to represent the prominent areas of research visually. RESULTS: The country with the highest number of publications and citations in this study was the United States of America, with 250 publications, 5917 citations, and the highest H-index of 44. Ophthalmic Plastic and Reconstructive Surgery is the leading journal. The UTMD Anderson Cancer Center had the highest number of publications, accounting for 43, or 4.76% of the total. Selva D from the University of Adelaide, Australia, is the top author with 26 publications, and 751 citations. Targeted therapy for PBCC-related pathways has been a hot topic in recent years. CONCLUSIONS: This study using bibliometrics seeks to explore the patterns and focal points of research and analyzes publication patterns, key research areas, influential authors, and prominent journals in periocular basal cell carcinoma during the last 2 decades.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA