Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Immunol ; 204(12): 3262-3272, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32332108

RESUMEN

The self-renewal ability is a unique property of fetal-derived innate-like B-1a lymphocytes, which survive and function without being replenished by bone marrow (BM) progenitors. However, the mechanism by which IgM-secreting mature B-1a lymphocytes self-renew is poorly understood. In this study, we showed that Bmi1 was critically involved in this process. Although Bmi1 is considered essential for lymphopoiesis, the number of mature conventional B cells was not altered when Bmi1 was deleted in the B cell lineage. In contrast, the number of peritoneal B-1a cells was significantly reduced. Peritoneal cell transfer assays revealed diminished self-renewal ability of Bmi1-deleted B-1a cells, which was restored by additional deletion of Ink4-Arf, the well-known target of Bmi1 Fetal liver cells with B cell-specific Bmi1 deletion failed to repopulate peritoneal B-1a cells, but not other B-2 lymphocytes after transplantation assays, suggesting that Bmi1 may be involved in the developmental process of B-1 progenitors to mature B-1a cells. Although Bmi1 deletion has also been shown to alter the microenvironment for hematopoietic stem cells, fat-associated lymphoid clusters, the reported niche for B-1a cells, were not impaired in Bmi1 -/- mice. RNA expression profiling suggested lysine demethylase 5B (Kdm5b) as another possible target of Bmi1, which was elevated in Bmi1-/- B-1a cells in a stress setting and might repress B-1a cell proliferation. Our work has indicated that Bmi1 plays pivotal roles in self-renewal and maintenance of fetal-derived B-1a cells.


Asunto(s)
Subgrupos de Linfocitos B/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Subgrupos de Linfocitos B/fisiología , Médula Ósea/metabolismo , Linaje de la Célula/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Microambiente Celular/fisiología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , Linfocitos/metabolismo , Linfocitos/fisiología , Linfopoyesis/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID
2.
Sci Rep ; 14(1): 13707, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877045

RESUMEN

Determining the fundamental characteristics that define a face as "feminine" or "masculine" has long fascinated anatomists and plastic surgeons, particularly those involved in aesthetic and gender-affirming surgery. Previous studies in this area have relied on manual measurements, comparative anatomy, and heuristic landmark-based feature extraction. In this study, we collected retrospectively at Cedars Sinai Medical Center (CSMC) a dataset of 98 skull samples, which is the first dataset of this kind of 3D medical imaging. We then evaluated the accuracy of multiple deep learning neural network architectures on sex classification with this dataset. Specifically, we evaluated methods representing three different 3D data modeling approaches: Resnet3D, PointNet++, and MeshNet. Despite the limited number of imaging samples, our testing results show that all three approaches achieve AUC scores above 0.9 after convergence. PointNet++ exhibits the highest accuracy, while MeshNet has the lowest. Our findings suggest that accuracy is not solely dependent on the sparsity of data representation but also on the architecture design, with MeshNet's lower accuracy likely due to the lack of a hierarchical structure for progressive data abstraction. Furthermore, we studied a problem related to sex determination, which is the analysis of the various morphological features that affect sex classification. We proposed and developed a new method based on morphological gradients to visualize features that influence model decision making. The method based on morphological gradients is an alternative to the standard saliency map, and the new method provides better visualization of feature importance. Our study is the first to develop and evaluate deep learning models for analyzing 3D facial skull images to identify imaging feature differences between individuals assigned male or female at birth. These findings may be useful for planning and evaluating craniofacial surgery, particularly gender-affirming procedures, such as facial feminization surgery.


Asunto(s)
Aprendizaje Profundo , Imagenología Tridimensional , Redes Neurales de la Computación , Cráneo , Humanos , Cráneo/anatomía & histología , Cráneo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Femenino , Masculino , Estudios Retrospectivos , Caracteres Sexuales , Adulto , Procesamiento de Imagen Asistido por Computador/métodos
3.
Commun Biol ; 6(1): 6, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596879

RESUMEN

Refractive error, measured here as mean spherical equivalent (SER), is a complex eye condition caused by both genetic and environmental factors. Individuals with strong positive or negative values of SER require spectacles or other approaches for vision correction. Common genetic risk factors have been identified by genome-wide association studies (GWAS), but a great part of the refractive error heritability is still missing. Some of this heritability may be explained by rare variants (minor allele frequency [MAF] ≤ 0.01.). We performed multiple gene-based association tests of mean Spherical Equivalent with rare variants in exome array data from the Consortium for Refractive Error and Myopia (CREAM). The dataset consisted of over 27,000 total subjects from five cohorts of Indo-European and Eastern Asian ethnicity. We identified 129 unique genes associated with refractive error, many of which were replicated in multiple cohorts. Our best novel candidates included the retina expressed PDCD6IP, the circadian rhythm gene PER3, and P4HTM, which affects eye morphology. Future work will include functional studies and validation. Identification of genes contributing to refractive error and future understanding of their function may lead to better treatment and prevention of refractive errors, which themselves are important risk factors for various blinding conditions.


Asunto(s)
Miopía , Errores de Refracción , Humanos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Miopía/genética , Errores de Refracción/genética , Población Blanca , Pueblos del Este de Asia
4.
Endocrinology ; 162(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34467975

RESUMEN

Islet function is critical for normal glucose homeostasis. Unlike adult ß cells, fetal and neonatal islets are more proliferative and have decreased insulin secretion in response to stimuli. However, the underlying mechanisms governing functional maturity of islets have not been completely elucidated. Pancreatic islets comprise different cell types. The microenvironment of islets and interactions between these cell types are critical for ß-cell development and maturation. Thus, the study of intact islets is optimal to identify novel molecular mechanisms controlling islet functional development. Transcriptomes and genome-wide histone landscapes of H3K4me3, H3K27me3, and H3K27Ac from intact islets isolated from 2- and 10-week-old Sprague-Dawley rats were integrated to elucidate genes and pathways modulating islet development, as well as the contribution of epigenetic regulation. A total of 4489 differentially expressed genes were identified; 2289 and 2200 of them were up- and down-regulated in 10-week islets, respectively. Ingenuity Pathway Analysis revealed critical pathways regulating functional maturation of islets, including nutrient sensing, neuronal function, immune function, cell replication, and extracellular matrix. Furthermore, we identified significant changes in enrichment of H3K4me3, H3K27me3, and H3K27Ac marks, which correlated with expression changes of genes critical for islet function. These histone marks were enriched at critical transcription factor-binding motifs, such as Hoxa9, C/EBP-ß, Gata1, Foxo1, E2f1, E2f3, and Mafb. In addition, our chromatin immunoprecipitation sequencing data revealed multiple potential bivalent genes whose poised states changed with maturation. Collectively, our current study identified critical novel pathways for mature islet function and suggested a role for histone modifications in regulating islet development and maturation.


Asunto(s)
Diferenciación Celular/genética , Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/crecimiento & desarrollo , Animales , Microambiente Celular/genética , Metabolismo Energético/genética , Epigénesis Genética/fisiología , Epigenoma/fisiología , Regulación de la Expresión Génica , Islotes Pancreáticos/inmunología , Islotes Pancreáticos/inervación , Islotes Pancreáticos/fisiología , Ratas , Ratas Sprague-Dawley , Transcriptoma/fisiología
5.
Cells ; 9(6)2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32527043

RESUMEN

Intrauterine growth retardation (IUGR), which induces epigenetic modifications and permanent changes in gene expression, has been associated with the development of type 2 diabetes. Using a rat model of IUGR, we performed ChIP-Seq to identify and map genome-wide histone modifications and gene dysregulation in islets from 2- and 10-week rats. IUGR induced significant changes in the enrichment of H3K4me3, H3K27me3, and H3K27Ac marks in both 2-wk and 10-wk islets, which were correlated with expression changes of multiple genes critical for islet function in IUGR islets. ChIP-Seq analysis showed that IUGR-induced histone mark changes were enriched at critical transcription factor binding motifs, such as C/EBPs, Ets1, Bcl6, Thrb, Ebf1, Sox9, and Mitf. These transcription factors were also identified as top upstream regulators in our previously published transcriptome study. In addition, our ChIP-seq data revealed more than 1000 potential bivalent genes as identified by enrichment of both H3K4me3 and H3K27me3. The poised state of many potential bivalent genes was altered by IUGR, particularly Acod1, Fgf21, Serpina11, Cdh16, Lrrc27, and Lrrc66, key islet genes. Collectively, our findings suggest alterations of histone modification in key transcription factors and genes that may contribute to long-term gene dysregulation and an abnormal islet phenotype in IUGR rats.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Retardo del Crecimiento Fetal/genética , Islotes Pancreáticos/metabolismo , Factores de Transcripción/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratas
6.
J Clin Endocrinol Metab ; 105(2)2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31536135

RESUMEN

CONTEXT: Prenatal exposure to bisphenol A (BPA) is linked to obesity and diabetes but the molecular mechanisms driving these phenomena are not known. Alterations in deoxyribonucleic acid (DNA) methylation in amniocytes exposed to BPA in utero represent a potential mechanism leading to metabolic dysfunction later in life. OBJECTIVE: To profile changes in genome-wide DNA methylation and expression in second trimester human amniocytes exposed to BPA in utero. DESIGN: A nested case-control study was performed in amniocytes matched for offspring sex, maternal race/ethnicity, maternal age, gestational age at amniocentesis, and gestational age at birth. Cases had amniotic fluid BPA measuring 0.251 to 23.74 ng/mL. Sex-specific genome-wide DNA methylation analysis and RNA-sequencing (RNA-seq) were performed to determine differentially methylated regions (DMRs) and gene expression changes associated with BPA exposure. Ingenuity pathway analysis was performed to identify biologically relevant pathways enriched after BPA exposure. In silico Hi-C analysis identified potential chromatin interactions with DMRs. RESULTS: There were 101 genes with altered expression in male amniocytes exposed to BPA (q < 0.05) in utero, with enrichment of pathways critical to hepatic dysfunction, collagen signaling and adipogenesis. Thirty-six DMRs were identified in male BPA-exposed amniocytes and 14 in female amniocyte analysis (q < 0.05). Hi-C analysis identified interactions between DMRs and 24 genes with expression changes in male amniocytes and 12 in female amniocytes (P < 0.05). CONCLUSION: In a unique repository of human amniocytes exposed to BPA in utero, sex-specific analyses identified gene expression changes in pathways associated with metabolic disease and novel DMRs with potential distal regulatory functions.


Asunto(s)
Amnios/citología , Compuestos de Bencidrilo/efectos adversos , Epigenoma/efectos de los fármacos , Exposición Materna/efectos adversos , Fenoles/efectos adversos , Factores Sexuales , Transcriptoma/efectos de los fármacos , Amnios/efectos de los fármacos , Amnios/embriología , Estudios de Casos y Controles , Metilación de ADN/efectos de los fármacos , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Obesidad/inducido químicamente , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA