Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cardiovasc Diabetol ; 23(1): 58, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336692

RESUMEN

AIM: Patients with diabetes mellitus have poor prognosis after myocardial ischemic injury. However, the mechanism is unclear and there are no related therapies. We aimed to identify regulators of diabetic myocardial ischemic injury. METHODS AND RESULTS: Mass spectrometry-based, non-targeted metabolomic approach was used to profile coronary sinus blood from diabetic and non-diabetic Bama-mini pigs at 0.5-h post coronary artery ligation. Six metabolites had a |log2 (Fold Change)|> 1.3. Among them, the most changed is arachidonic acid (AA), levels of which were 32 times lower in diabetic pigs than in non-diabetic pigs. The AA-derived products, PGI2 and 6-keto-PGF1α, were also significantly reduced. AA treatment of cultured cardiomyocytes protected against cell death by 30% at 48 h of high glucose and oxygen deprivation, which coincided with increased mitophagic activity (as indicated by increased LC3II/LC3I, decreased p62 and increased parkin & PINK1), improved mitochondrial renewal (upregulation of Drp1 and FIS1), reduced ROS generation and increased ATP production. These cardioprotective effects were abolished by PINK1(a crucial mitophagy protein) knockdown or the autophagy inhibitor 3-Methyladenine. The protective effect of AA was also inhibited by indomethacin and Cay10441, a prostacyclin receptor antagonist. Furthermore, diabetic Sprague Dawley rats were subjected to coronary ligation for 40 min and AA treatment (10 mg/day per animal gavaged) decreased myocardial infarct size, cell apoptosis index, inflammatory cytokines and improved heart function. Scanning electron microscopy showed more intact mitochondria in the border zone of infarcted myocardium in AA treated rats. Lastly, diabetic patients after myocardial infarction had lower plasma levels of AA and 6-keto-PGF1α and reduced cardiac ejection fraction, compared with non-diabetic patients after myocardial infarction. Plasma AA level was inversely correlated with fasting blood glucose. CONCLUSIONS: AA protects against diabetic ischemic myocardial damage by promoting mitochondrial autophagy and renewal, which is related to AA derived PGI2 signaling. AA may represent a new strategy to treat diabetic myocardial ischemic injury.


Asunto(s)
Diabetes Mellitus , Infarto del Miocardio , Humanos , Ratas , Animales , Porcinos , Ratas Sprague-Dawley , Ácido Araquidónico/farmacología , Porcinos Enanos/metabolismo , Infarto del Miocardio/metabolismo , Proteínas Quinasas/metabolismo , Apoptosis
2.
J Surg Res ; 296: 182-188, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38277955

RESUMEN

INTRODUCTION: Anastomotic leakage post-esophagectomy remains a significant challenge. Despite the use of both mechanical and manual anastomosis, leakage rates remain high. This study evaluated the effectiveness of the manual layered insertion anastomosis technique in addressing this issue. METHODS: A retrospective analysis was conducted on patients who underwent this technique from September 2020 to December 2021. The process involved thoracoscopic release of the esophagus, mediastinal lymph node dissection, laparoscopic stomach release, and its transformation into a tube. The latter was then guided to the neck for anastomosis. The posterior anastomotic wall was reshaped in the neck first for optimal insertion, followed by layered suturing with the gastric conduit. The anterior wall was subsequently sutured and repositioned into the chest. RESULTS: The study included 56 patients (51 men, five women, mean age 65.4 y), with nine having undergone neoadjuvant therapy. All received minimally invasive esophagectomy. Average intraoperative blood loss was 79.8 mL, operation time averaged 331 min, and feeding resumed after an average of 6.3 d. No anastomotic leakages were reported, with reduced incidences of anastomotic stenosis and gastric acid reflux compared to previous studies. CONCLUSIONS: The manual layered insertion anastomosis technique may reduce anastomotic leakage and associated complications, improving the efficacy of esophagectomy, which may improve postoperative results and patient quality of life, suggesting the method's potential suitability for wider clinical application.


Asunto(s)
Fuga Anastomótica , Neoplasias Esofágicas , Masculino , Humanos , Femenino , Anciano , Fuga Anastomótica/etiología , Fuga Anastomótica/prevención & control , Fuga Anastomótica/cirugía , Esofagectomía/efectos adversos , Esofagectomía/métodos , Neoplasias Esofágicas/cirugía , Neoplasias Esofágicas/complicaciones , Estudios Retrospectivos , Calidad de Vida , Anastomosis Quirúrgica/efectos adversos , Anastomosis Quirúrgica/métodos , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/prevención & control , Complicaciones Posoperatorias/cirugía
3.
Ren Fail ; 46(2): 2367021, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38938187

RESUMEN

RATIONALE AND OBJECTIVES: Researchers have delved into noninvasive diagnostic methods of renal fibrosis (RF) in chronic kidney disease, including ultrasound (US), magnetic resonance imaging (MRI), and radiomics. However, the value of these diagnostic methods in the noninvasive diagnosis of RF remains contentious. Consequently, the present study aimed to systematically delineate the accuracy of the noninvasive diagnosis of RF. MATERIALS AND METHODS: A systematic search covering PubMed, Embase, Cochrane Library, and Web of Science databases for all data available up to 28 July 2023 was conducted for eligible studies. RESULTS: We included 21 studies covering 4885 participants. Among them, nine studies utilized US as a noninvasive diagnostic method, eight studies used MRI, and four articles employed radiomics. The sensitivity and specificity of US for detecting RF were 0.81 (95% CI: 0.76-0.86) and 0.79 (95% CI: 0.72-0.84). The sensitivity and specificity of MRI were 0.77 (95% CI: 0.70-0.83) and 0.92 (95% CI: 0.85-0.96). The sensitivity and specificity of radiomics were 0.69 (95% CI: 0.59-0.77) and 0.78 (95% CI: 0.68-0.85). CONCLUSIONS: The current early noninvasive diagnostic methods for RF include US, MRI, and radiomics. However, this study demonstrates that US has a higher sensitivity for the detection of RF compared to MRI. Compared to US, radiomics studies based on US did not show superior advantages. Therefore, challenges still exist in the current radiomics approaches for diagnosing RF, and further exploration of optimized artificial intelligence (AI) algorithms and technologies is needed.


Asunto(s)
Fibrosis , Imagen por Resonancia Magnética , Insuficiencia Renal Crónica , Ultrasonografía , Humanos , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/complicaciones , Sensibilidad y Especificidad , Riñón/patología , Riñón/diagnóstico por imagen
4.
Water Sci Technol ; 89(1): 54-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38214986

RESUMEN

The volume capture ratio of annual rainfall (VCRAR) of low-impact development measures is significantly influenced by its operating characteristics, particularly for residential stormwater detention tanks (SWDTs). The multi-objective operation strategy of SWDTs, encompassing toilet flushing (TF), green space irrigation (GSI), combined TF and GSI (TF-GSI), and peak flow reduction (PFR) rate, were compared using a case study in Beijing based on the stormwater management model. The findings indicate that the VCRAR for TF, GSI, and TF-GSI rainwater harvesting targets was 89.05, 77.16, and 91.21%, respectively. The operating scheme and return periods have a significant impact on the PFR rate's effectiveness. When the return period was lower than 10 years, the SWDT does not reach its maximum storage capacity, and the PFR rate was increased with increasing the return period: the PFR rate was 71.47% when the design return period was 10 years. It will also produce the phenomena of water inrush, and the overflow volume will grow rapidly when the SWDT reaches its maximum storage capacity. Hence, the operation of SWDTs may be integrated with real-time control to optimize the VCRAR for rainwater reuse and flood migration, thereby enhancing the volume utilization efficiency of SWDTs.


Asunto(s)
Lluvia , Movimientos del Agua , Beijing , Abastecimiento de Agua , Inundaciones
5.
Angew Chem Int Ed Engl ; : e202409004, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837495

RESUMEN

Previous N-glycosylation approaches have predominately involved acidic conditions, facing challenges of low stereoselectivity and limited scope. Herein, we introduce a radical activation strategy that enables versatile and stereoselective N-glycosylation using readily accessible glycosyl sulfinate as a donor under basic conditions and exhibits exceptional tolerance towards various N-aglycones containing alkyl, aryl, heteroaryl and nucleobase functionalities. Preliminary mechanistic studies indicate a pivotal role of iodide, which orchestrates the formation of a glycosyl radical from the glycosyl sulfinate and subsequent generation of the key intermediate, a configurationally well-defined glycosyl iodide, which is subsequently attacked by an N-aglycone in a stereospecific SN2 manner to give the desired N-glycosides. An alternative route involving the coupling of a glycosyl radical and a nitrogen-centered radical is also proposed, affording the exclusive 1,2-trans product. This novel approach promises to broaden the synthetic landscape of N-glycosides, offering a powerful tool for the construction of complex glycosidic structures under mild conditions.

6.
Appl Environ Microbiol ; 89(1): e0186222, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36602328

RESUMEN

The importance of the rare microbial biosphere in maintaining biodiversity and ecological functions has been highlighted recently. However, the current understanding of the spatial distribution of rare microbial taxa is still limited, with only a few investigations for rare prokaryotes and virtually none for rare fungi. Here, we investigated the spatial patterns of rare and abundant fungal taxa in alpine grassland soils across 2,000 km of the Qinghai-Tibetan plateau. We found that most locally rare fungal taxa remained rare (13.07%) or were absent (82.85%) in other sites, whereas only a small proportion (4.06%) shifted between rare and abundant among sites. Although they differed in terms of diversity levels and compositions, the distance decay relationships of both the rare and the abundant fungal taxa were valid and displayed similar turnover rates. Moreover, the community assemblies of both rare and abundant fungal taxa were predominantly controlled by deterministic rather than stochastic processes. Notably, the community composition of rare rather than abundant fungal taxa associated with the plant community composition. In summary, this study advances our understanding of the biogeographic features of rare fungal taxa in alpine grasslands and highlights the concordance between plant communities and rare fungal subcommunities in soil. IMPORTANCE Our current understanding of the ecology and functions of rare microbial taxa largely relies on research conducted on prokaryotes. Despite the key ecological roles of soil fungi, little is known about the biogeographic patterns and drivers of rare and abundant fungi in soils. In this study, we investigated the spatial patterns of rare and abundant fungal taxa in Qinghai-Tibetan plateau (QTP) alpine grassland soils across 2,000 km, with a special concentration on the importance of the plant communities in shaping rare fungal taxa. We showed that rare fungal taxa generally had a biogeographic pattern that was similar to that of abundant fungal taxa in alpine grassland soils on the QTP. Furthermore, the plant community composition was strongly related to the community composition of rare taxa but not abundant taxa. In summary, this study significantly increases our biogeographic and ecological knowledge of rare fungal taxa in alpine grassland soils.


Asunto(s)
Pradera , Suelo , Plantas , Biodiversidad , Tibet , Microbiología del Suelo
7.
Plant Cell ; 32(7): 2292-2306, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32409321

RESUMEN

Maintaining stable, high yields under fluctuating environmental conditions is a long-standing goal of crop improvement but is challenging due to internal trade-off mechanisms, which are poorly understood. Here, we identify ARGONAUTE2 (AGO2) as a candidate target for achieving this goal in rice (Oryza sativa). Overexpressing AGO2 led to a simultaneous increase in salt tolerance and grain length. These benefits were achieved via the activation of BIG GRAIN3 (BG3), encoding a purine permease potentially involved in cytokinin transport. AGO2 can become enriched on the BG3 locus and alter its histone methylation level, thus promoting BG3 expression. Cytokinin levels decreased in shoots but increased in roots of AGO2-overexpressing plants. While bg3 knockout mutants were hypersensitive to salt stress, plants overexpressing BG3 showed strong salt tolerance and large grains. The knockout of BG3 significantly reduced grain length and salt tolerance in AGO2-overexpressing plants. Both genes were transcriptionally suppressed by salt treatment. Salt treatment markedly increased cytokinin levels in roots but decreased them in shoots, resulting in a hormone distribution pattern similar to that in AGO2-overexpressing plants. These findings highlight the critical roles of the spatial distribution of cytokinins in both stress responses and grain development. Therefore, optimizing cytokinin distribution represents a promising strategy for improving both grain yield and stress tolerance in rice.


Asunto(s)
Citocininas/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Tolerancia a la Sal/fisiología , Semillas/fisiología , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Mutación , Oryza/efectos de los fármacos , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente
8.
Glob Chang Biol ; 29(11): 3147-3158, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36883758

RESUMEN

Canopy greening, which is associated with significant canopy structure changes, is the most notable signal of ecosystem changes in response to anthropogenic climate change. However, our knowledge of the changing pattern of canopy development and senescence, and its endogenous and climatic drivers is still limited. Here, we used the Normalized Difference Vegetation Index (NDVI) to quantify the changes in the speed of canopy development and senescence over the Tibetan Plateau (TP) during 2000-2018, and used a solar-induced chlorophyll fluorescence dataset as a proxy for photosynthesis, in combination with climate datasets to decipher the endogenous and climatic drivers of the interannual variation in canopy changes. We found that the canopy development during the early green-up stage (April-May) is accelerating at a rate of 0.45-0.8 × 10-3  month-1  year-1 . However, this accelerating canopy development was largely offset by a decelerating canopy development during June and July (-0.61 to -0.51 × 10-3  month-1  year-1 ), leading to the peak NDVI over the TP increasing at a rate of only one fifth of that in northern temperate regions, and less than one tenth of that in the Arctic and boreal regions. During the green-down period, we observed a significant accelerating canopy senescence during October. Photosynthesis was found to be the dominant driver for canopy changes over the TP. Increasing photosynthesis stimulates canopy development during the early green-up stage. However, slower canopy development and accelerated senescence was found with larger photosynthesis in late growth stages. This negative relationship between photosynthesis and canopy development is probably linked to the source-sink balance of plants and shifts in the allocation regime. These results suggest a sink limitation for plant growth over the TP. The impact of canopy greening on the carbon cycle may be more complicated than the source-oriented paradigm used in current ecosystem models.


Asunto(s)
Ecosistema , Fotosíntesis , Tibet , Estaciones del Año , Fotosíntesis/fisiología , Plantas
9.
Virol J ; 20(1): 264, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968757

RESUMEN

The porcine pseudorabies virus (PRV) is one of the most devastating pathogens and brings great economic losses to the swine industry worldwide. Viruses are intracellular parasites that have evolved numerous strategies to subvert and utilize different host processes for their life cycle. Among the different systems of the host cell, the cytoskeleton is one of the most important which not only facilitate viral invasion and spread into neighboring cells, but also help viruses to evade the host immune system. RhoA is a key regulator of cytoskeleton system that may participate in virus infection. In this study, we characterized the function of RhoA in the PRV replication by chemical drugs treatment, gene knockdown and gene over-expression strategy. Inhibition of RhoA by specific inhibitor and gene knockdown promoted PRV proliferation. On the contrary, overexpression of RhoA or activation of RhoA by chemical drug inhibited PRV infection. Besides, our data demonstrated that PRV infection induced the disruption of actin stress fiber, which was consistent with previous report. In turn, the actin specific inhibitor cytochalasin D markedly disrupted the normal fibrous structure of intracellular actin cytoskeleton and decreased the PRV replication, suggesting that actin cytoskeleton polymerization contributed to PRV replication in vitro. In summary, our data displayed that RhoA was a host restriction factor that inhibited PRV replication, which may deepen our understanding the pathogenesis of PRV and provide further insight into the prevention of PRV infection and the development of anti-viral drugs.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Porcinos , Animales , Herpesvirus Suido 1/fisiología , Actinas , Línea Celular , Replicación Viral
10.
Inorg Chem ; 62(35): 14216-14227, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37615424

RESUMEN

Novel endohedral metallofullerenes (EMFs), namely, Er2C2@C2v(5)-C80, Er2C2@Cs(6)-C82, Er2C2@Cs(15)-C84, Er2C2@C2v(9)-C86, Er2C2@Cs(15)-C86, and Er2C2@Cs(32)-C88, had been experimentally synthesized, and the unique structures and many fascinating properties had also been widely explored. Nevertheless, the position of the Er atoms inside the cage shows a severe disorder within the stable EMF monomer, which is difficult to understand and explain from the experimental point of view. In this work, based on the density functional theoretical calculations, the Er2C2@Cs(6)-C82 has 73 directional isomers and 2 Er atoms that are far beyond from Er-Er single bonding and tend to be close to the cage side (marked as "shell"), and the core (Er2C2 units) takes on a butterfly shape as generally revealed. The energy difference between any two of the isomers is in the range of 0.05 to 25.6 kcal/mol, indicating a relatively easy thermodynamic transition between the isomers. The other five Er carbide cluster EMFs (Er2C2@C2v(5)-C80, Er2C2@Cs(15)-C84, Er2C2@C2v(9)-C86, Er2C2@Cs(15)-C86, and Er2C2@Cs(32)-C88) are also studied in the same way, and 30, 37, 39, and 43 most stable Er-oriented sites inside the cage, respectively, are obtained. In addition, the shape of the Er2C2 gradually changed from butterfly to linear. Moreover, the electronic structure and molecular orbital analyses show that it is easy for Er2C2@C80-88 to form a charge transfer state of [Er2C2]4+@[C80-88]4- via the dynamic core-shell coordination equilibrium. Er2C2 with a steep drop in chemical stability is restricted to forming varying degrees of metastable states in the shell, determined by the shell size, to ensure the overall stability. The lowest unoccupied molecular orbital energy level of these EMFs is increased by 0.5-1.1 eV compared with fullerenes C80-88, potentially providing favorable conditions for suitable energy level matching with EMF as an electron acceptor used in organic solar cell devices.

11.
Phys Chem Chem Phys ; 25(37): 25871-25879, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37725156

RESUMEN

Tri-(2,4,6-trichlorophenyl)methyl (TTM) based radicals can be promising in providing relatively high fluorescence quantum efficiency. In this study, we have evaluated the photoluminescence properties of a series of TTM-based radicals by means of DFT and TD-DFT methods. The optimized structures of the ground states (D0) and the first excited states (D1) of all the radicals are calculated and the computed emission bands are comparable with previous experimental results. knr is determined from transition dipole moments (µ12) and the energy gaps between D0 and D1 (ΔE), both of which can be regulated by the conjugated structures from the substituent groups. knr was derived from the mode-averaging method and is consistent with the experimental results. Factors influencing kr and knr, including the potential energy differences (ΔG0), the vibrational reorganization energies (λ) and the electron coupling term (Hab), are discussed. By comparing kr and knr in solvents with different polarities (cyclohexane, toluene, and chloroform), TTM based radicals in cyclohexane exhibit the most promising fluorescence efficiencies. Besides, two substituted radicals, namely 2Br-TTM-3PCz and 2F-TTM-3PCz, have been fabricated. The results show that fluorine atoms are able to increase ΔG0 and a considerably small knr has been predicted. We expect that our calculation can benefit the design of light-emitting molecules in further experiments.

12.
Phys Chem Chem Phys ; 25(47): 32317-32322, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37991811

RESUMEN

We report the first use of carbon-doped boron nitride (BCN) for H2S-selective catalytic oxidation. The obtained carbon-doped BN with an ultrathin layer structure exhibits outstanding H2S elimination and high S yield. In particular, BN doped carbon nanosheets display better catalytic performance than traditional catalysts, such as iron- and carbon-based catalysts. The findings of the present work shed a new light on metal-free catalysts for efficient catalytic removal of toxic H2S.

13.
Nature ; 545(7655): 491-494, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28514448

RESUMEN

Controlling plant disease has been a struggle for humankind since the advent of agriculture. Studies of plant immune mechanisms have led to strategies of engineering resistant crops through ectopic transcription of plants' own defence genes, such as the master immune regulatory gene NPR1 (ref. 1). However, enhanced resistance obtained through such strategies is often associated with substantial penalties to fitness, making the resulting products undesirable for agricultural applications. To remedy this problem, we sought more stringent mechanisms of expressing defence proteins. On the basis of our latest finding that translation of key immune regulators, such as TBF1 (ref. 3), is rapidly and transiently induced upon pathogen challenge (see accompanying paper), we developed a 'TBF1-cassette' consisting of not only the immune-inducible promoter but also two pathogen-responsive upstream open reading frames (uORFsTBF1) of the TBF1 gene. Here we demonstrate that inclusion of uORFsTBF1-mediated translational control over the production of snc1-1 (an autoactivated immune receptor) in Arabidopsis thaliana and AtNPR1 in rice enables us to engineer broad-spectrum disease resistance without compromising plant fitness in the laboratory or in the field. This broadly applicable strategy may lead to decreased pesticide use and reduce the selective pressure for resistant pathogens.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Aptitud Genética/genética , Sistemas de Lectura Abierta/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Biosíntesis de Proteínas , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Productos Agrícolas/genética , Productos Agrícolas/inmunología , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/biosíntesis , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/inmunología , Oryza/genética , Oryza/inmunología , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Regiones Promotoras Genéticas/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Transcripción Genética
14.
Proc Natl Acad Sci U S A ; 117(7): 3867-3873, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32024752

RESUMEN

In plants, enhanced defense often compromises growth and development, which is regarded as trade-offs between growth and defense. Here we identified a gene, OsALDH2B1, that functions as a master regulator of the growth-defense trade-off in rice. OsALDH2B1 has its primary function as an aldehyde dehydrogenase and a moonlight function as a transcriptional regulator. Loss of function of OsALDH2B1 greatly enhanced resistance to broad-spectrum pathogens, including fungal blast, bacterial leaf blight, and leaf streak, but caused severe phenotypic changes such as male sterility and reduced plant size, grain size, and number. We showed that its primary function as a mitochondrial aldehyde dehydrogenase conditions male fertility. Its moonlight function of transcriptional regulation, featuring both repressing and activating activities, regulates a diverse range of biological processes involving brassinolide, G protein, jasmonic acid, and salicylic acid signaling pathways. Such regulations cause large impacts on the morphology and immunity of rice plants. The versatile functions of OsALDH2B1 provide an example of the genic basis of growth-defense trade-offs in plants.


Asunto(s)
Aldehído Deshidrogenasa/inmunología , Regulación de la Expresión Génica de las Plantas , Oryza/crecimiento & desarrollo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/inmunología , Aldehído Deshidrogenasa/genética , Ciclopentanos/metabolismo , Resistencia a la Enfermedad , Magnaporthe/fisiología , Oryza/genética , Oryza/metabolismo , Oryza/microbiología , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo
15.
Plant Physiol ; 187(3): 1746-1761, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34618083

RESUMEN

Plant cell walls are the first physical barrier against pathogen invasion, and plants thicken the cell wall to strengthen it and restrain pathogen infection. Bacterial blight is a devastating rice (Oryza sativa) disease caused by Xanthomonas oryzae pv. oryzae (Xoo), which typically enters the rice leaf through hydathodes and spreads throughout the plant via the xylem. Xoo interacts with cells surrounding the xylem vessel of a vascular bundle, but whether rice strengthens the sclerenchyma cell walls to stop pathogen proliferation is unclear. Here, we found that a WRKY protein, OsWRKY53, negatively confers resistance to Xoo by strengthening the sclerenchyma cell walls of the vascular bundle. OsMYB63 acts as a transcriptional activator and promotes the expression of three secondary cell wall-related cellulose synthase genes to boost cellulose accumulation, resulting in thickened sclerenchyma cell walls. Both OsWRKY53 and OsMYB63 are abundantly expressed in sclerenchyma cells of leaf vascular bundles. OsWRKY53 functions as a transcriptional repressor and acts genetically upstream of OsMYB63 to suppress its expression. The OsWRKY53-overexpressing and OsMYB63 knockout plants had thinner sclerenchyma cell walls, showing susceptibility to Xoo, while the OsWRKY53 knockout and OsMYB63-overexpressing plants had thicker sclerenchyma cell walls, exhibiting resistance to Xoo. These results suggest that modifying these candidate genes provides a strategy to improve rice resistance to bacterial pathogens.


Asunto(s)
Pared Celular/fisiología , Proteínas de Unión al ADN/genética , Oryza/fisiología , Células Vegetales/fisiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Xanthomonas/fisiología , Secuencia de Bases , Proteínas de Unión al ADN/metabolismo , Resistencia a la Enfermedad , Técnicas de Inactivación de Genes , Oryza/genética , Oryza/microbiología , Proteínas de Plantas/metabolismo
16.
Acta Biochim Biophys Sin (Shanghai) ; 54(7): 952-960, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35880566

RESUMEN

The aquaporin 8 (AQP8) is a small integral membrane protein that selectively transports water and other small uncharged solutes across cell plasma membranes. It has been demonstrated that AQP8 is ubiquitously present in various tissues and organs of mammals, and participates in many physiological and pathological processes. Recent studies showed that AQP8 is highly expressed in the columnar epithelial cells of mammalian colonic mucosa facing lumen, indicating that AQP8 plays potential roles in the physiology and pathophysiology of gastrointestinal tract. However, the role of AQP8 during gastrointestinal tract development is unclear. In the present study, RT-PCR results reveal that the zebrafish genome encodes three kinds of aqp8s ( aqp8aa, aqp8ab, and aqp8b). We use whole mount in situ hybridization to describe aqp8 genes spatiotemporal expression pattern, and the results show that aqp8ab mRNA is detectable mainly in the zebrafish embryonic intestine. To reveal the details of aqp8ab distribution, histological sections are employed. Transverse sections indicate that aqp8ab mRNA expression is more intense in the layer lining the intestinal cavity. Knockout of aqp8ab using the CRISPR/Cas9 system induces intestine development defects and abnormal formation of intestinal lumen. In addition, aqp8ab mRNA significantly rescues the intestine defects in the aqp8ab mutant. These results indicate that aqp8ab is required in the intestine development of zebrafish.


Asunto(s)
Acuaporinas , Pez Cebra , Animales , Acuaporinas/genética , Acuaporinas/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Mamíferos/genética , Mamíferos/metabolismo , ARN Mensajero/genética , Pez Cebra/genética , Pez Cebra/metabolismo
17.
Int J Biometeorol ; 66(10): 1997-2008, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35902391

RESUMEN

China is the largest fruit producer and consumer market in the world. Understanding the growing conditions responses to climate change is the key to predict future site suitability of main cultivation areas for certain deciduous fruit trees. In this study, we used dynamic and growing degree day models driven by downscaled daily temperatures from 22 global climate models to project the effects of climate change on growing conditions for deciduous fruit trees under two representative concentration pathway (RCP) 4.5 and RCP8.5 scenarios over 2 future time periods (represented by central years 2050s and 2085s) in northern China. The results showed a general increase of available winter chill for all sites under RCP4.5 scenario, and the most dramatic increase in chill accumulation could reach up to 36.8% in northeast regions for RCP8.5. However, the forecasted chill will decrease by 6.4% in southeast stations under RCP8.5 by 2085s. Additionally, the increase rate of growing season heat showed spatially consistency, and the most pronounced increase was found in the RCP8.5 by 2085s. For the southwest station, median heat accumulation increased by 20.8% in the 2050s and 37.1% in the 2085s under RCP8.5. Similar increasing range could be found in the northeast station; the median growing season heat increased by 19.8% and 38.8% in the 2050s and 2085s under RCP8.5, respectively. Moreover, the date of last spring frost was expected to advance and the frequency of frost occurrences was projected to decline in the study area compared to the past. Overall, the present study improves understanding regarding site-specific characteristics of climatic suitability for deciduous fruit tree cultivation in main producing regions of northern China. The results could provide growers and decision-makers with theoretical evidence to take adaptive measure to ensure fruit production in future.


Asunto(s)
Frutas , Árboles , China , Cambio Climático , Estaciones del Año , Árboles/fisiología
18.
BMC Biol ; 19(1): 90, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941183

RESUMEN

BACKGROUND: Leaf senescence is a genetically controlled degenerative process intimately linked to phosphate homeostasis during plant development and responses to environmental conditions. Senescence is accelerated by phosphate deficiency, with recycling and mobilization of phosphate from senescing leaves serving as a major phosphate source for sink tissues. Previously, miR827 was shown to play a significant role in regulating phosphate homeostasis, and induction of its expression was also observed during Arabidopsis leaf senescence. However, whether shared mechanisms underlie potentially common regulatory roles of miR827 in both processes is not understood. Here, we dissect the regulatory machinery downstream of miR827. RESULTS: Overexpression or inhibited expression of miR827 led to an acceleration or delay in the progress of senescence, respectively. The transcriptional regulator GLABRA1 enhancer-binding protein (GeBP)-like (GPLα) gene was identified as a possible target of miR827. GPLα expression was elevated in miR827-suppressed lines and reduced in miR827-overexpressing lines. Furthermore, heterologous co-expression of pre-miR827 in tobacco leaves reduced GPLα transcript levels, but this effect was eliminated when pre-miR827 recognition sites in GPLα were mutated. GPLα expression is induced during senescence and its inhibition or overexpression resulted in senescence acceleration and inhibition, accordingly. Furthermore, GPLα expression was induced by phosphate deficiency, and overexpression of GPLα led to reduced expression of phosphate transporter 1 genes, lower leaf phosphate content, and related root morphology. The encoded GPLα protein was localized to the nucleus. CONCLUSIONS: We suggest that MiR827 and the transcription factor GPLα may be functionally involved in senescence and phosphate homeostasis, revealing a potential new role for miR827 and the function of the previously unstudied GPLα. The close interactions between senescence and phosphate homeostasis are further emphasized by the functional involvement of the two regulatory components, miR827 and GPLα, in both processes and the interactions between them.


Asunto(s)
Homeostasis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , MicroARNs , Fosfatos/metabolismo , Hojas de la Planta/metabolismo , Senescencia de la Planta , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
19.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36613887

RESUMEN

Brassinosteroid (BR) is an important endogenous phytohormone that plays a significant role in fruit quality regulation. The regulation of BR biosynthesis and its physiological effects have been well-studied in various fruits. External quality (fruit longitudinal and transverse diameters, firmness, single berry weight, color) and internal quality (sugars, aroma, anthocyanin, stress-related metabolites) are important parameters that are modified during grape berry development and ripening. Grapevines are grown all over the world as a cash crop and utilized for fresh consumption, wine manufacture, and raisin production. In this paper, the biosynthesis and signaling transduction of BR in grapevine were summarized, as well as the recent developments in understanding the role of BR in regulating the external quality (fruit longitudinal and transverse diameters, firmness, single berry weight, and color) and internal quality (sugars, organic acids, aroma substances, anthocyanins, antioxidants) of grapes. Additionally, current advancements in exogenous BR strategies for improving grape berries quality were examined from the perspectives of enzymatic activity and transcriptional regulation. Furthermore, the interaction between BR and other phytohormones regulating the grape berry quality was also discussed, aiming to provide a reliable reference for better understanding the potential value of BR in the grape/wine industry.


Asunto(s)
Vitis , Vitis/metabolismo , Frutas/metabolismo , Brasinoesteroides/metabolismo , Antocianinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Azúcares/metabolismo
20.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555269

RESUMEN

Root-zone restriction induces physiological stress on roots, thus limiting the vegetative and enhancing reproductive development, which promotes fruit quality and growth. Numerous bacterial-related growth-promoting, stress-mitigating, and disease-prevention activities have been described, but none in root-restricted cultivation. The study aimed to understand the activities of grapevine bacterial communities and plant-bacterial relationships to improve fruit quality. We used High-throughput sequencing, edaphic soil factors, and network analysis to explore the impact of restricted cultivation on the diversity, composition and network structure of bacterial communities of rhizosphere soil, roots, leaves, flowers and berries. The bacterial richness, diversity, and networking were indeed regulated by root-zone restriction at all phenological stages, with a peak at the veraison stage, yielding superior fruit quality compared to control plants. Moreover, it also handled the nutrient availability in treated plants, such as available nitrogen (AN) was 3.5, 5.7 and 0.9 folds scarcer at full bloom, veraison and maturity stages, respectively, compared to control plants. Biochemical indicators of the berry have proved that high-quality berry is yielded in association with the bacteria. Cyanobacteria were most abundant in the phyllosphere, Proteobacteria in the rhizosphere, and Firmicutes and Bacteroidetes in the endosphere. These bacterial phyla were most correlated and influenced by different soil factors in control and treated plants. Our findings are a comprehensive approach to the implications of root-zone restriction on the bacterial microbiota, which will assist in directing a more focused procedure to uncover the precise mechanism, which is still undiscovered.


Asunto(s)
Microbiota , Suelo , Suelo/química , Microbiología del Suelo , Rizosfera , Microbiota/fisiología , Bacterias/genética , Plantas , Raíces de Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA