Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Plant Cell Environ ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899426

RESUMEN

Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) causes a devastating canker disease in yellow-fleshed kiwifruit (Actinidia chinensis). The effector HopZ5, which is present in all isolates of Psa3 causing global outbreaks of pandemic kiwifruit canker disease, triggers immunity in Nicotiana benthamiana and is not recognised in susceptible A. chinensis cultivars. In a search for N. benthamiana nonhost resistance genes against HopZ5, we found that the nucleotide-binding leucine-rich repeat receptor NbPTR1 recognised HopZ5. RPM1-interacting protein 4 orthologues from N. benthamiana and A. chinensis formed a complex with NbPTR1 and HopZ5 activity was able to disrupt this interaction. No functional orthologues of NbPTR1 were found in A. chinensis. NbPTR1 transformed into Psa3-susceptible A. chinensis var. chinensis 'Hort16A' plants introduced HopZ5-specific resistance against Psa3. Altogether, this study suggested that expressing NbPTR1 in Psa3-susceptible kiwifruit is a viable approach to acquiring resistance to Psa3 and it provides valuable information for engineering resistance in otherwise susceptible kiwifruit genotypes.

2.
Langmuir ; 40(17): 8886-8896, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38622867

RESUMEN

Surface-enhanced Raman scattering (SERS) is a remarkably powerful analytical technique enabling trace-level detection of biological molecules. The interaction of a probe molecule with the SERS substrate shows important distinctions in the SERS spectra, providing inherent fingerprint information on the probe molecule. Herein, nonhalogenated phosphonium-based ionic liquids (ILs) containing cations with varying chain lengths were used as trace additives to amplify the interaction between the cytochrome c (Cyt c) and Zr-Al-Co-O (ZACO) nanotube arrays, strengthening the SERS signals. An increased enhancement factor (EF) by 2.5-41.2 times compared with the system without ILs was achieved. The improvement of the SERS sensitivity with the introduction of these ILs is strongly dependent on the cation chain length, in which the increasing magnitude of EF is more pronounced in the system with a longer alkyl chain length on the cation. Comparing the interaction forces measured by Cyt c-grafted atomic force microscopy (AFM) probes on ZACO substrates with those predicted by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, the van der Waals forces became increasingly dominant as the chain length of the cations increased, associated with stronger Cyt c-ZACO XDLVO interaction forces. The major contributing component, van der Waals force, stems from the longer cation chains of the IL, which act as a bridge to connect Cyt c and the ZACO substrate, promoting the anchoring of the Cyt c molecules onto the substrate, thereby benefiting SERS enhancement.

3.
Plant Physiol ; 190(2): 1100-1116, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35916752

RESUMEN

Volatile esters are key compounds contributing to flavor intensity in commonly consumed fruits including apple (Malus domestica), strawberry (Fragaria spp.), and banana (Musa sapientum). In kiwifruit (Actinidia spp.), ethyl butanoate and other esters have been proposed to contribute fruity, sweet notes to commercial cultivars. Here, we investigated the genetic basis for ester production in Actinidia in an A. chinensis mapping population (AcMPO). A major quantitative trait loci for the production of multiple esters was identified at the high-flavor intensity (HiFI) locus on chromosome 20. This locus co-located with eight tandemly arrayed alcohol acyl transferase genes in the Red5 genome that were expressed in a ripening-specific fashion that corresponded with ester production. Biochemical characterization suggested two genes at the HiFI locus, alcohol acyl transferase 16-b/c (AT16-MPb/c), probably contributed most to the production of ethyl butanoate. A third gene, AT16-MPa, probably contributed more to hexyl butanoate and butyl hexanoate production, two esters that segregated in AcMPO. Sensory analysis of AcMPO indicated that fruit from segregating lines with high ester concentrations were more commonly described as being "fruity" as opposed to "beany". The downregulation of AT16-MPa-c by RNAi reduced ester production in ripe "Hort16A" fruit by >90%. Gas chromatography-olfactometry indicated the loss of the major "fruity" notes contributed by ethyl butanoate. A comparison of unimproved Actinidia germplasm with those of commercial cultivars indicated that the selection of fruit with high concentrations of alkyl esters (but not green note aldehydes) was probably an important selection trait in kiwifruit cultivation. Understanding ester production at the HiFI locus is a critical step toward maintaining and improving flavor intensity in kiwifruit.


Asunto(s)
Actinidia , Fragaria , Malus , Musa , Actinidia/genética , Aldehídos , Caproatos/análisis , Ésteres , Frutas/química , Frutas/genética , Malus/genética
4.
Angew Chem Int Ed Engl ; 62(37): e202308420, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37469306

RESUMEN

Two-dimensional (2D)-halide perovskites have been enriched over recent years to offer remarkable features from diverse chemical structures and environmental stability endowed with exciting functionalities in photoelectric detectors and phosphorescence systems. However, the low conversion efficiency of singlet to triplet in 2D hybrid halide perovskites reduces phosphorescence lifetimes. In this study, the long persistent luminescence of 2D all-inorganic perovskites with a self-assembled 2D interlayer galleries structure is investigated. The results show that the decay time of the long persistent luminescence increases from 450 s to 600 s, and the luminescence color changes from cyan to orange, and the thermal stability of photoluminescence enhances dramatically after replacing Cd2+ by appropriate Mn2+ ions in 2D Cs2 CdCl4 Ruddlesden-Popper phase perovskites. Furthermore, diversified anti-counterfeiting modes are fabricated to highlight the promising applications of Cs2 CdCl4 perovskite systems with tunable persistent luminescence in advanced anti-counterfeiting. Therefore, our studies provide a novel model for realizing tunable long persistent luminescence of perovskite with 2D self-assembled layered structure for advanced anti-counterfeiting.

5.
New Phytol ; 233(5): 2111-2126, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34907541

RESUMEN

Temperate perennials require exposure to chilling temperatures to resume growth in the following spring. Growth and dormancy cycles are controlled by complex genetic regulatory networks and are governed by epigenetic mechanisms, but the specific genes and mechanisms remain poorly understood. To understand how seasonal changes and chilling regulate dormancy and growth in the woody perennial vine kiwifruit (Ac, Actinidia chinensis), a transcriptome study of kiwifruit buds in the field and controlled conditions was performed. A MADS-box gene with homology to Arabidopsis FLOWERING LOCUS C (FLC) was identified and characterized. Elevated expression of AcFLC-like (AcFLCL) was detected during bud dormancy and chilling. A long noncoding (lnc) antisense transcript with an expression pattern opposite to AcFLCL and shorter sense noncoding RNAs were identified. Chilling induced an increase in trimethylation of lysine-4 of histone H3 (H3K4me3) in the 5' end of the gene, indicating multiple layers of epigenetic regulation in response to cold. Overexpression of AcFLCL in kiwifruit gave rise to plants with earlier budbreak, whilst gene editing using CRISPR-Cas9 resulted in transgenic lines with substantially delayed budbreak, suggesting a role in activation of growth. These results have implications for the future management and breeding of perennials for resilience to changing climate.


Asunto(s)
Actinidia , Actinidia/genética , Actinidia/metabolismo , Frío , Epigénesis Genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
New Phytol ; 235(2): 630-645, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35348217

RESUMEN

Anthocyanins are visual cues for pollination and seed dispersal. Fruit containing anthocyanins also appeals to consumers due to its appearance and health benefits. In kiwifruit (Actinidia spp.) studies have identified at least two MYB activators of anthocyanin, but their functions in fruit and the mechanisms by which they act are not fully understood. Here, transcriptome and small RNA high-throughput sequencing were used to comprehensively identify contributors to anthocyanin accumulation in kiwifruit. Stable overexpression in vines showed that both 35S::MYB10 and MYB110 can upregulate anthocyanin biosynthesis in Actinidia chinensis fruit, and that MYB10 overexpression resulted in anthocyanin accumulation which was limited to the inner pericarp, suggesting that repressive mechanisms underlie anthocyanin biosynthesis in this species. Furthermore, motifs in the C-terminal region of MYB10/110 were shown to be responsible for the strength of activation of the anthocyanic response. Transient assays showed that both MYB10 and MYB110 were not directly cleaved by miRNAs, but that miR828 and its phased small RNA AcTAS4-D4(-) efficiently targeted MYB110. Other miRNAs were identified, which were differentially expressed between the inner and outer pericarp, and cleavage of SPL13, ARF16, SCL6 and F-box1, all of which are repressors of MYB10, was observed. We conclude that it is the differential expression and subsequent repression of MYB activators that is responsible for variation in anthocyanin accumulation in kiwifruit species.


Asunto(s)
Actinidia , MicroARNs , Actinidia/genética , Actinidia/metabolismo , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Plantas/metabolismo
7.
New Phytol ; 230(4): 1461-1475, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33503269

RESUMEN

Kiwifruit (Actinidia chinensis) is a dioecious, long-living woody perennial vine. Reduced generation time and induction of hermaphroditism can accelerate crop improvement and facilitate alternative farming for better food security in the face of climate change. Previous studies identified that CENTRORADIALIS genes CEN and CEN4 act to repress flowering, whilst the male-specific Shy Girl (SyGl) gene with homology to type-C cytokinin response regulators could repress gynoecium development in model plants. Here we use CRISPR/Cas9 to mutagenize CEN, CEN4 and SyGl in the male kiwifruit A. chinensis 'Bruce'. Biallelic mutations of CEN and CEN4 generated rapid-flowering male plants, and simultaneous targeting of CEN4 and SyGl gave rise to rapid-flowering hermaphrodites with restored gynoecial function and viable pollen, providing functional evidence for the role of SyGl in suppression of feminization. Analysis of ovary tissues identified genes that contribute to carpel development and revealed that SyGl affected both cytokinin profiles and the expression of genes involved in cytokinin metabolism and signalling. The plant lines generated by CEN4/SyGl knockout could self-pollinate and produce fast-flowering offspring. These results establish that SyGI acts as the suppressor of feminization in kiwifruit and demonstrate the potential for accelerated breeding in an outcrossing horticultural woody perennial.


Asunto(s)
Actinidia , Actinidia/metabolismo , Citocininas , Feminización , Flores/genética , Flores/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Humanos , Masculino , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Plant Biotechnol J ; 17(5): 869-880, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30302894

RESUMEN

Annualization of woody perennials has the potential to revolutionize the breeding and production of fruit crops and rapidly improve horticultural species. Kiwifruit (Actinidia chinensis) is a recently domesticated fruit crop with a short history of breeding and tremendous potential for improvement. Previously, multiple kiwifruit CENTRORADIALIS (CEN)-like genes have been identified as potential repressors of flowering. In this study, CRISPR/Cas9- mediated manipulation enabled functional analysis of kiwifruit CEN-like genes AcCEN4 and AcCEN. Mutation of these genes transformed a climbing woody perennial, which develops axillary inflorescences after many years of juvenility, into a compact plant with rapid terminal flower and fruit development. The number of affected genes and alleles and severity of detected mutations correlated with the precocity and change in plant stature, suggesting that a bi-allelic mutation of either AcCEN4 or AcCEN may be sufficient for early flowering, whereas mutations affecting both genes further contributed to precocity and enhanced the compact growth habit. CRISPR/Cas9-mediated mutagenesis of AcCEN4 and AcCEN may be a valuable means to engineer Actinidia amenable for accelerated breeding, indoor farming and cultivation as an annual crop.


Asunto(s)
Actinidia/genética , Flores/genética , Actinidia/anatomía & histología , Actinidia/crecimiento & desarrollo , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Expresión Génica Ectópica/genética , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Edición Génica , Genes de Plantas/genética , Genes de Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología
9.
Plant Mol Biol ; 96(3): 233-244, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29222611

RESUMEN

KEY MESSAGE: Genome-wide targets of Actinidia chinensis SVP2 confirm roles in ABA- and dehydration-mediated growth repression and reveal a conservation in mechanism of action between SVP genes of taxonomically distant Arabidopsis and a woody perennial kiwifruit. The molecular mechanisms underlying growth and dormancy in woody perennials are largely unknown. In Arabidopsis, the MADS-box transcription factor SHORT VEGETATIVE PHASE (SVP) plays a key role in the progression from vegetative to floral development, and in woody perennials SVP-like genes are also proposed to be involved in controlling dormancy. During kiwifruit development SVP2 has a role in growth inhibition, with high-chill kiwifruit Actinidia deliciosa transgenic lines overexpressing SVP2 showing suppressed bud outgrowth. Transcriptomic analyses of these plants suggests that SVP2 mimics the well-documented abscisic acid (ABA) effect on the plant dehydration response. To corroborate the growth inhibition role of SVP2 in kiwifruit development at the molecular level, we analysed the genome-wide direct targets of SVP2 using chromatin immunoprecipitation followed by high-throughput sequencing in kiwifruit A. chinensis. SVP2 was found to bind to at least 297 target sites in the kiwifruit genome, and potentially modulates 252 genes that function in a range of biological processes, especially those involved in repressing meristem activity and ABA-mediated dehydration pathways. In addition, our ChIP-seq analysis reveals remarkable conservation in mechanism of action between SVP genes of taxonomically distant plant species.


Asunto(s)
Actinidia/genética , Actinidia/fisiología , Regulación de la Expresión Génica de las Plantas , Actinidia/crecimiento & desarrollo , Sequías , Flores/genética , Frutas/genética , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Estrés Fisiológico
10.
J Exp Bot ; 68(7): 1539-1553, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369532

RESUMEN

Kiwifruit is a woody perennial horticultural crop, characterized by excessive vegetative vigor, prolonged juvenility, and low productivity. To understand the molecular factors controlling flowering and winter dormancy, here we identify and characterize the kiwifruit PEBP (phosphatidylethanolamine-binding protein) gene family. Five CEN-like and three BFT-like genes are differentially expressed and act as functionally conserved floral repressors, while two MFT-like genes have no impact on flowering time. FT-like genes are differentially expressed, with AcFT1 confined to shoot tip and AcFT2 to mature leaves. Both act as potent activators of flowering, but expression of AcFT2 in Arabidopsis resulted in a greater impact on plant morphology than that of AcFT1. Constitutive expression of either construct in kiwifruit promoted in vitro flowering, but AcFT2 displayed a greater flowering activation efficiency than AcFT1, leading to immediate floral transition and restriction of leaf development. Both leaf and flower differentiation were observed in AcFT1 kiwifruit lines. Sequential activation of specific PEBP genes in axillary shoot buds during growth and dormancy cycles indicated specific roles in regulation of kiwifruit vegetative and reproductive phenologies. AcCEN and AcCEN4 marked active growth, AcBFT2 was associated with suppression of latent bud growth during winter, and only AcFT was activated after cold accumulation and dormancy release.


Asunto(s)
Actinidia/crecimiento & desarrollo , Actinidia/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Proteínas de Unión a Fosfatidiletanolamina/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Flores/genética , Proteínas de Unión a Fosfatidiletanolamina/química , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Alineación de Secuencia
12.
Int J Mol Sci ; 17(4): 441, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27023517

RESUMEN

Copper/zinc superoxide dismutases (Cu/ZnSODs) play important roles in improving banana resistance to adverse conditions, but their activities depend on the copper chaperone for superoxide dismutase (CCS) delivering copper to them. However, little is known about CCS in monocots and under stress conditions. Here, a novel CCS gene (MaCCS) was obtained from a banana using reverse transcription PCR and rapid-amplification of cDNA ends (RACE) PCR. Sequence analyses showed that MaCCS has typical CCS domains and a conserved gene structure like other plant CCSs. Alternative transcription start sites (ATSSs) and alternative polyadenylation contribute to the mRNA diversity of MaCCS. ATSSs in MaCCS resulted in one open reading frame containing two in-frame start codons to form two protein versions, which is supported by the MaCCS subcellular localization of in both cytosol and chloroplasts. Furthermore, MaCCS promoter was found to contain many cis-elements associated with abiotic and hormonal responses. Quantitative real-time PCR analysis showed that MaCCS was expressed in all tested tissues (leaves, pseudostems and roots). In addition, MaCCS expression was significantly induced by light, heat, drought, abscisic acid and indole-3-acetic acid, but inhibited by relatively high concentrations of CuSO4 and under cold treatment, which suggests that MaCCS is involved in abiotic and hormonal responses.


Asunto(s)
Cobre/metabolismo , Chaperonas Moleculares/genética , Musa/metabolismo , Proteínas de Plantas/genética , Regiones no Traducidas 3' , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Chaperonas Moleculares/clasificación , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Estrés Fisiológico/genética
13.
J Exp Bot ; 66(15): 4699-710, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25979999

RESUMEN

The MADS-domain transcription factor SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is one of the key integrators of endogenous and environmental signals that promote flowering in the annual species Arabidopsis thaliana. In the deciduous woody perennial vine kiwifruit (Actinidia spp.), environmental signals are integrated to regulate annual cycles of growth and dormancy. Accumulation of chilling during winter is required for dormancy break and flowering in spring. In order to understand the regulation of dormancy and flowering in kiwifruit, nine kiwifruit SOC1-like genes were identified and characterized. All genes affected flowering time of A. thaliana Col-0 and were able to rescue the late flowering phenotype of the soc1-2 mutant when ectopically expressed. A differential capacity for homodimerization was observed, but all proteins were capable of strong interactions with SHORT VEGETATIVE PHASE (SVP) MADS-domain proteins. Largely overlapping spatial domains but distinct expression profiles in buds were identified between the SOC1-like gene family members. Ectopic expression of AcSOC1e, AcSOC1i, and AcSOC1f in Actinidia chinensis had no impact on establishment of winter dormancy and failed to induce precocious flowering, but AcSOC1i reduced the duration of dormancy in the absence of winter chilling. These findings add to our understanding of the SOC1-like gene family and the potential diversification of SOC1 function in woody perennials.


Asunto(s)
Actinidia/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Latencia en las Plantas , Proteínas de Plantas/genética , Actinidia/metabolismo , Secuencia de Aminoácidos , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Dominio MADS/química , Proteínas de Dominio MADS/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN
14.
J Exp Bot ; 65(17): 4985-95, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24948678

RESUMEN

SVP-like MADS domain transcription factors have been shown to regulate flowering time and both inflorescence and flower development in annual plants, while having effects on growth cessation and terminal bud formation in perennial species. Previously, four SVP genes were described in woody perennial vine kiwifruit (Actinidia spp.), with possible distinct roles in bud dormancy and flowering. Kiwifruit SVP3 transcript was confined to vegetative tissues and acted as a repressor of flowering as it was able to rescue the Arabidopsis svp41 mutant. To characterize kiwifruit SVP3 further, ectopic expression in kiwifruit species was performed. Ectopic expression of SVP3 in A. deliciosa did not affect general plant growth or the duration of endodormancy. Ectopic expression of SVP3 in A. eriantha also resulted in plants with normal vegetative growth, bud break, and flowering time. However, significantly prolonged and abnormal flower, fruit, and seed development were observed, arising from SVP3 interactions with kiwifruit floral homeotic MADS-domain proteins. Petal pigmentation was reduced as a result of SVP3-mediated interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator, MYB110a, and the gene encoding the key anthocyanin biosynthetic step, F3GT1. Constitutive expression of SVP3 had a similar impact on reproductive development in transgenic tobacco. The flowering time was not affected in day-neutral and photoperiod-responsive Nicotiana tabacum cultivars, but anthesis and seed germination were significantly delayed. The accumulation of anthocyanin in petals was reduced and the same underlying mechanism of R2R3 MYB NtAN2 transcript reduction was demonstrated.


Asunto(s)
Actinidia/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Plantas/genética , Actinidia/crecimiento & desarrollo , Actinidia/metabolismo , Secuencia de Aminoácidos , Antocianinas/biosíntesis , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Proteínas de Plantas/metabolismo , Reproducción
15.
New Phytol ; 198(3): 732-746, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23577598

RESUMEN

FLOWERING LOCUS T (FT) and CENTRORADIALIS (CEN) homologs have been implicated in regulation of growth, determinacy and flowering. The roles of kiwifruit FT and CEN were explored using a combination of expression analysis, protein interactions, response to temperature in high-chill and low-chill kiwifruit cultivars and ectopic expression in Arabidopsis and Actinidia. The expression and activity of FT was opposite from that of CEN and incorporated an interaction with a FLOWERING LOCUS D (FD)-like bZIP transcription factor. Accumulation of FT transcript was associated with plant maturity and particular stages of leaf, flower and fruit development, but could be detected irrespective of the flowering process and failed to induce precocious flowering in transgenic kiwifruit. Instead, transgenic plants demonstrated reduced growth and survival rate. Accumulation of FT transcript was detected in dormant buds and stem in response to winter chilling. In contrast, FD in buds was reduced by exposure to cold. CEN transcript accumulated in developing latent buds, but declined before the onset of dormancy and delayed flowering when ectopically expressed in kiwifruit. Our results suggest roles for FT, CEN and FD in integration of developmental and environmental cues that affect dormancy, budbreak and flowering in kiwifruit.


Asunto(s)
Actinidia/crecimiento & desarrollo , Actinidia/genética , Flores/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Tallos de la Planta/genética , Plantas Modificadas Genéticamente , Homología de Secuencia de Aminoácido , Transducción de Señal , Temperatura , Factores de Transcripción/genética
16.
Heliyon ; 9(7): e17709, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37483723

RESUMEN

Exploratory innovation is critical to the breakthrough of core technologies in the integrated circuit (IC) industry, and cooperative innovation is a promising form of IC industry development. According to the viewpoint of social network, this paper constructs intercity networks of the IC industry by using a data set of cooperation patents from 2011 to 2020 in China. We uncover the evolution characteristics of the innovation networks, explore the relationship between network centrality and exploratory innovation in a city, and consider universities and development zones, named support organizations, as moderating variables. The results of the social network analysis (SNA) and dynamic panel system generalized method of moments model (System-GMM) are given as follows: Cities are increasingly inclined to collaborate with counterparts over time for innovation, but the overall network scale remains small. Beijing occupies core position in the networks. A cooperative innovation model driven by peripheral cities has been formed as the number of the peripheral cities has gradually increased. The network centrality of a city has a positive effect on its exploratory innovation. Both universities and development zones positively moderate the effect of network centrality on exploratory innovation. Based on the characteristics of the network, our study reveals the importance of taking the internal structure of the network and the node support environment into the same framework, which provides guidance for the innovative development of the world IC industry.

17.
J Phys Chem Lett ; 14(2): 326-333, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36603192

RESUMEN

Copper-based halide perovskites have been considered as promising scintillators. However, they still cannot meet the requirement of low-dose-rate X-ray imaging in medical diagnosis. Herein, we design a fiber optic plate (FOP) coupled perovskite X-ray camera to reduce the dose rate toward dental X-ray imaging. Tl doped Cs3Cu2I5 prepared via molten salt reaction has a high light yield of 72,000 photons/MeV, resulting from Tl10/Tl20-self-trapped hole emissions. After FOP coupling, the pulp cavity, root canal, dentin and root canal file can be clearly observed under a low dose rate as low as 3 µGyair s-1, which is absolutely lower than the required 5.5 µGyair s-1 for commercial intraoral dental sensors. The realization of such a low dose rate is attributed to the high coupling efficiency of 75% for the FOP and the high brightness of 262 lm m-2 for the scintillation screen. This designed portable X-ray camera shows its huge potential in intraoral dental X-ray imaging.


Asunto(s)
Compuestos de Calcio , Óxidos , Rayos X , Fotones
18.
Adv Healthc Mater ; 12(10): e2202531, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36562213

RESUMEN

Liquid metal (especially eutectic gallium indium, EGaIn) nanoparticle inks overcome the poor wettability of high surface tension EGaIn to elastomer substrates and show great potential in soft electronics. Normally, a sintering strategy is required to break the oxide shells of the EGaIn nanoparticles (EGaIn NPs) to achieve conductive paths. Herein, for the first time, thermal-sinterable EGaIn NP inks are prepared by introducing thermal expansion microspheres (TEMs) into EGaIn NP solution. Through the mechanical pressure induced by the expansion of the heated TEMs, the printed EGaIn NPs can be sintered into electrically conductive paths to achieve highly stretchable bioelectrode arrays, which exhibit giant electromechanical performance (up to 680% strain), good cyclic stability (over 2 × 104  cycles), and stable conductivity after high-speed rotation (6000 rpm). Simultaneously, the recording sites are hermetically sealed by ionic elastomer layers, ensuring the complete leakage-free property of EGaIn and reducing the electrochemical impedance of the electrodes (891.16 Ω at 1 kHz). The bioelectrode is successfully applied to monitor dynamic electromyographic signals. The sintering strategy overcomes the disadvantages of the traditional sintering strategies, such as leakage of EGaIn, reformation of large EGaIn droplets, and low throughput, which promotes the application of EGaIn in soft electronics.


Asunto(s)
Tinta , Nanopartículas , Elastómeros , Conductividad Eléctrica , Impedancia Eléctrica
19.
Adv Sci (Weinh) ; 10(34): e2304957, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37870217

RESUMEN

High-resolution X-ray imaging is increasingly required for medical diagnosis and large-area detection. However, the issues of scattering and optical crosstalk are limiting the spatial resolution of the indirect X-ray imaging. In this study, a feasible and efficient strategy is proposed to in situ synthesize flexible Cs3 Cu2 I5 :2%In+ @paper as a superior scintillator film, which can be scaled up to an ultra-large area of 4800 cm2 . The as-obtained Cs3 Cu2 I5 :2%In+ @paper performs a fascinating photoluminescence quantum efficiency up to 88.14%, a steady state light yield of 70169 photons/MeV, and spatial resolution of 15 lp mm-1 . Moreover, the suppressed physical scattering and optical crosstalk of the corresponding film are demonstrated. Accordingly, this work explores a feasible fabrication of customizable scintillation films with large area for high-resolution X-ray detection.

20.
ACS Appl Mater Interfaces ; 15(19): 23421-23428, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37150943

RESUMEN

High-temperature scintillation detectors play a significant role in oil exploration. However, traditional scintillators have limited ability to meet the requirements of practical applications owing to their low thermal stability. In this study, we designed and developed a one-dimensional (1D) Cs5Cu3Cl6I2 scintillator with high thermal stability. In addition, by preparing Cs5Cu3Cl7I, we proved that the Cs5Cu3Cl6I2 scintillator exhibits high thermal stability because the bridges linking the structural units in the 1D chain structure are only formed by I- ions, which improve their structural rigidity. The scintillator has a high steady-state light yield (59,700 photons MeV-1) and exhibits the highest spatial resolution for powder-based scintillation screens (18 lp mm-1) after cyclic treatment within the temperature range of 298-423 K. The Cs5Cu3Cl6I2 scintillator allows the visualization of alloy melting, indicating that it has significant potential for application in high-temperature environments. This study provides a new perspective toward the design of scintillators with high thermal stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA