Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(5): e1012228, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739679

RESUMEN

The arthropod exoskeleton provides protection and support and is vital for survival and adaption. The integrity and mechanical properties of the exoskeleton are often impaired after pathogenic infection; however, the detailed mechanism by which infection affects the exoskeleton remains largely unknown. Here, we report that the damage to the shrimp exoskeleton is caused by modulation of host lipid profiles after infection with white spot syndrome virus (WSSV). WSSV infection disrupts the mechanical performance of the exoskeleton by inducing the expression of a chitinase (Chi2) in the sub-cuticle epidermis and decreasing the cuticle chitin content. The induction of Chi2 expression is mediated by a nuclear receptor that can be activated by certain enriched long-chain saturated fatty acids after infection. The damage to the exoskeleton, an aftereffect of the induction of host lipogenesis by WSSV, significantly impairs the motor ability of shrimp. Blocking the WSSV-caused lipogenesis restored the mechanical performance of the cuticle and improved the motor ability of infected shrimp. Therefore, this study reveals a mechanism by which WSSV infection modulates shrimp internal metabolism resulting in phenotypic impairment, and provides new insights into the interactions between the arthropod host and virus.


Asunto(s)
Exoesqueleto , Metabolismo de los Lípidos , Penaeidae , Virus del Síndrome de la Mancha Blanca 1 , Animales , Penaeidae/virología , Penaeidae/metabolismo , Exoesqueleto/metabolismo , Exoesqueleto/virología , Virus del Síndrome de la Mancha Blanca 1/fisiología , Metabolismo de los Lípidos/fisiología , Interacciones Huésped-Patógeno , Lipogénesis/fisiología
2.
EMBO Rep ; 24(5): e55903, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36975049

RESUMEN

In the arthropod gut, commensal microbiota maintain the immune deficiency (Imd)/Relish pathway for expression of antimicrobial peptides, whereas pathogenic bacteria induce dual oxidase 2 (Duox2) for production of extracellular microbicidal reactive oxygen species (ROS). The Imd/Relish pathway and the Duox2/ROS system are regarded as independent systems. Here, we report that these two systems are bridged by the tumor necrosis factor (TNF) ortholog PcEiger in the red swamp crayfish Procambarus clarkii. PcEiger expression is induced by commensal bacteria or the Imd/Relish pathway. PcEiger knockdown alters bacterial abundance and community composition due to variations in the oxidative status of the intestine. PcEiger induces Duox2 expression and ROS production by regulating the activity of the transcription factor Atf2. Moreover, PcEiger mediates regulation of the Duox2/ROS system by commensal bacteria and the Imd/Relish pathway. Our findings suggest that the Imd/Relish pathway regulates the Duox2/ROS system via PcEiger in P. clarkii, and they provide insights into the crosstalk between these two important mechanisms for arthropod intestinal immunity.


Asunto(s)
Astacoidea , Factores de Transcripción , Animales , Astacoidea/metabolismo , Astacoidea/microbiología , Especies Reactivas de Oxígeno , Oxidasas Duales/genética , Factores de Transcripción/metabolismo , Intestinos , Inmunidad Innata
3.
PLoS Pathog ; 18(1): e1010253, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35073369

RESUMEN

Flagellin is a key bacterial virulence factor that can stimulate molecular immune signaling in both animals and plants. The detailed mechanisms of recognizing flagellin and mounting an efficient immune response have been uncovered in vertebrates; however, whether invertebrates can discriminate flagellin remains largely unknown. In the present study, the homolog of human SHOC2 leucine rich repeat scaffold protein in kuruma shrimp (Marsupenaeus japonicus), designated MjShoc2, was found to interact with Vibrio anguillarum flagellin A (FlaA) using yeast two-hybrid and pull-down assays. MjShoc2 plays a role in antibacterial response by mediating the FlaA-induced expression of certain antibacterial effectors, including lectin and antimicrobial peptide. FlaA challenge, via MjShoc2, led to phosphorylation of extracellular regulated kinase (Erk), and the subsequent activation of signal transducer and activator of transcription (Stat), ultimately inducing the expression of effectors. Therefore, by establishing the FlaA/MjShoc2/Erk/Stat signaling axis, this study revealed a new antibacterial strategy in shrimp, and provides insights into the flagellin sensing mechanism in invertebrates.


Asunto(s)
Proteínas de Artrópodos/inmunología , Flagelina/inmunología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Penaeidae/inmunología , Vibriosis/inmunología , Animales , Sistema de Señalización de MAP Quinasas/inmunología , Penaeidae/microbiología , Factores de Transcripción STAT/inmunología , Vibrio
4.
PLoS Pathog ; 18(11): e1010967, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36417479

RESUMEN

Small antibacterial effectors, including lysozymes, lectins, and antimicrobial peptides, are key regulators of intestinal immunity. However, whether there is coordination among them during regulation is an interesting, but largely unknown, issue. In the present study, we revealed that small effectors synergistically regulate peptidoglycan-derived intestinal immunity in the kuruma shrimp, Marsupenaeus japonicus. A C-type lysozyme (LysC) was screened as a responsive factor for the intestine-bacteria interaction. LysC functions to restrict intestinal bacteria, mainly by cleaving Photobacterium damselae peptidoglycan to generate muropeptides which are powerful stimulators that induce anti-lipopolysaccharides factor B1 (AlfB1), an effective bactericidal peptide. The muropeptides also induce a C-type lectin (Ctl24), which recognizes peptidoglycan and coats bacteria. By counteracting LysC-mediated muropeptide release and AlfB1's bactericidal activity, Ctl24 prevents the continuous elimination of intestinal bacteria. Therefore, this study demonstrates a mechanism by which small immune effectors coordinate to achieve intestinal homeostasis, and provides new insights into peptidoglycan-derived intestinal immunity in invertebrates.


Asunto(s)
Penaeidae , Peptidoglicano , Animales , Pared Celular , Intestinos , Lectinas Tipo C
5.
J Immunol ; 206(6): 1140-1150, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33526439

RESUMEN

Intestinal microbiota are closely related to host physiology. Over the long course of evolution and interaction, both commensal bacteria and their host have evolved multiple strategies to adapt to each other. However, in invertebrates, the regulatory mechanism of intestinal microbiota homeostasis is largely unknown. In the current study, a digestive tract-specific C-type lectin, designated as CTL33, was identified because of its abundance and response to bacteria in the intestine of kuruma shrimp (Marsupenaeus japonicus). Silencing of CTL33 expression led directly to intestinal dysbiosis, tissue damage, and shrimp death. CTL33 could facilitate biofilm formation by the intestinal bacteria. This function originated from its unique architecture, with a lectin domain responsible for bacteria recognition and a coiled coil region that mediated CTL33 dimerization and cross-linked the bacteria into a biofilm-like complex. By mediating the formation of a biofilm, CTL33 promoted the establishment of intestinal bacteria in intestine and maintained the homeostasis of the microbiota. Thus, to our knowledge, we demonstrated a new mechanism of C-type lectin-mediated biofilm formation by intestinal bacteria, providing new insights into intestinal homeostasis regulation in invertebrates.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Bacterias/inmunología , Microbioma Gastrointestinal/inmunología , Lectinas Tipo C/metabolismo , Penaeidae/inmunología , Animales , Proteínas de Artrópodos/genética , Biopelículas , Disbiosis/genética , Disbiosis/inmunología , Disbiosis/microbiología , Técnicas de Silenciamiento del Gen , Homeostasis/inmunología , Interacciones Microbiota-Huesped/inmunología , Lectinas Tipo C/genética , Penaeidae/metabolismo , Penaeidae/microbiología , Dominios Proteicos
6.
J Sci Food Agric ; 103(2): 599-605, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36468612

RESUMEN

BACKGROUND: Since the 1990s, drylands have been extensively converted to rice paddy fields on the former wetlands in the Sanjiang Plain of northeast China. However, the influence of this successiveland-use change from native wetlands to drylands to rice paddy fields on soil organic carbon (C) dynamics remains unexplored. Here, we compared the difference in soil organic C stock among native wetlands, drylands, and paddy fields, and then used a two-step acid hydrolysis approach to examine the effect of this land-use change on labile C I (LPI-C), labile C II (LPII-C), and recalcitrant C (RP-C) fractions at depths of 0-15 cm, 15-30 cm, and 30-50 cm. RESULTS: Soil organic C stock at a depth of 0-50 cm was reduced by 79% after the conversion of wetlands to drylands but increased by 24% when drylands were converted to paddy fields. Compared with wetlands, paddy fields had 74% lower soil organic C stock at a depth of 0-50 cm. The conversion of wetlands to drylands reduced the concentrations of LPI-C, LPII-C, and RP-C fractions at each soil depth. However, land-use change from drylands to paddy fields only increased the concentrations of LPI-C and LPII-C fractions at the 0-15 cm and 30-50 cm depths. CONCLUSION: The conversion of drylands to paddy lands on former wetlands enhances the soil organic C stock by promoting labile C fraction accumulation, and labile C fractions are more sensitive to this successive land-use change than recalcitrant C fractions in the Sanjiang Plain of northeast China. © 2022 Society of Chemical Industry.


Asunto(s)
Carbono , Oryza , Humedales , Suelo , Translocación Genética , Yoduros , Anticuerpos , China
7.
J Immunol ; 204(3): 487-497, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31852752

RESUMEN

Rapid synthesis and release of active antimicrobial peptides (AMPs) is an important strategy in innate immune. Processing of the precursor into the active form is a common posttranslational modification of AMPs in mammals. However, in invertebrates, the mechanism of AMP maturation is largely unknown. In the current study, to our knowledge, a novel potential AMP, designated as PcnAMP, was identified because of its significant induction by bacterial infection in the red swamp crayfish (Procambarus clarkii). PcnAMP was cleaved into a short fragment postinfection. Using the purified native peptide, this cleavage was found to be mediated by trypsin after synthesis. Proteolysis produced an N-terminal peptide that exerted the antibacterial function. Although the N-terminal peptide did not show significant similarity to any other sequences, it was predicted to have an overall helical structure and high amphipathicity, both of which are typical features of many AMPs. The N-terminal active peptide exhibited a wide spectrum of antimicrobial activity. Atomic force microscope imaging and flow cytometry analysis showed that treatment with the active form of PcnAMP led to the collapse of the bacterial cell wall and permeabilization of the bacterial cell membrane. Thus, this study provided a new candidate for therapeutic agent development, and revealed new insights into the maturation of AMPs in invertebrates.


Asunto(s)
Aeromonas hydrophila/fisiología , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de Artrópodos/metabolismo , Astacoidea/inmunología , Pared Celular/metabolismo , Infecciones por Bacterias Gramnegativas/inmunología , Animales , Permeabilidad de la Membrana Celular , Células Cultivadas , Citometría de Flujo , Perfilación de la Expresión Génica , Inmunidad Innata , Microscopía de Fuerza Atómica , Filogenia , Proteolisis
8.
J Immunol ; 203(5): 1131-1141, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31331974

RESUMEN

The myeloid differentiation factor 2 (MD-2)-related lipid-recognition (ML) domain is found in multiple proteins, including MD-2, MD-1, Niemann-Pick disease type C2, and mite major allergen proteins. The significance of ML proteins in antibacterial signal transduction and in lipid metabolism has been well studied. However, their function in host-virus interaction remains poorly understood. In the current study, we found that the ML protein family is involved in resistance against white spot syndrome virus in kuruma shrimp, Marsupenaeus japonicus One member, which showed a high similarity to mammalian MD-2/MD-1 and was designated as ML1, participated in the antiviral response by recognizing cholesta-3,5-diene (CD), a lipid component of the white spot syndrome virus envelope. After recognizing CD, ML1 induced the translocation of Rel family NF-κB transcription factor Dorsal into the nucleus, resulting in the expression of Vago, an IFN-like antiviral cytokine in arthropods. Overall, this study revealed the significance of an MD-2 homologue as an immune recognition protein for virus lipids. The identification and characterization of CD-ML1-Dorsal-Vago signaling provided new insights into invertebrate antiviral immunity.


Asunto(s)
Colestadienos/inmunología , Interacciones Huésped-Patógeno , Antígeno 96 de los Linfocitos/fisiología , Penaeidae/inmunología , Virus del Síndrome de la Mancha Blanca 1/inmunología , Animales , FN-kappa B/fisiología
9.
J Stroke Cerebrovasc Dis ; 30(10): 106045, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34418671

RESUMEN

BACKGROUND: Matrix metalloproteinase 10 (MMP-10) has a close relationship with carotid atherosclerosis (CAS) and cerebral infarction. The MMP-10 rs17435959 polymorphism causes a leucine to valine transition at codon 4 in exon 1 of the MMP-10 gene and may have functional effects. OBJECTIVES: To investigate the relationship between the MMP-10 rs17435959 polymorphism and the formation and stability of CAS plaques. MATERIALS AND METHODS: The present case-control study contains 738 visitors who came to our health examination center for the first time. According to the carotid ultrasound examinations, visitors were classified into the vulnerable plaque group (41-86 years old, 141 male, 105 female), the stable plaque group (41-86 years old, 141 male, 105 female) and the no plaque group (41-85 years old, 141 male, 105 female). All visitors in the three groups were sex- and- age-matched, and cardiovascular and cerebrovascular diseases were absent. The polymorphism was genotyped by real-time polymerase chain reaction- restriction. RESULTS: Compared to the GG genotype, the frequency of the CC and CG genotypes was significantly more common in the vulnerable plaque group than in the no plaque group (18.7% vs. 7.7%, unadjusted P = 0.002). Moreover, compared to the G allele, the frequency of the C allele was significantly more common in the vulnerable plaque group than in the no plaque group (10.4% vs. 3.9%, unadjusted P = 0.000) and in the vulnerable plaque group than in the stable plaque group (10.4% vs. 5.1%, unadjusted P = 0.008). Binary logistic regression showed that the CC and CG genotype was independent risk factor for the formation (P = 0.019, OR = 1.961, 95% CI [1.117, 3.444]) and vulnerability (P = 0.035, OR = 1.842, 95% CI [1.045, 3.247]) of CAS plaques. Moreover, individuals who have the C allele showed a higher level of fibrinogen, which was an independent risk factor for the formation of CAS plaques (P = 0.000, OR = 2.425, 95% CI [1.475, 3.985]). CONCLUSIONS: The rs17435959 polymorphism was associated with the formation and vulnerability of CAS plaques. Individuals who had variant-type MMP-10 showed higher levels of fibrinogen, which promoted the formation of CAS plaques.


Asunto(s)
Enfermedades de las Arterias Carótidas/genética , Metaloproteinasa 10 de la Matriz/genética , Placa Aterosclerótica , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/enzimología , Estudios de Casos y Controles , Femenino , Fibrinógeno/análisis , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Pronóstico , Medición de Riesgo , Factores de Riesgo , Rotura Espontánea
10.
Fish Shellfish Immunol ; 94: 592-598, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31518688

RESUMEN

Whey acidic protein domain (WAPD) is a usual motif in crustaceans, and is found mainly in the immune-related proteins. In the present study, a protein containing three tandem WAPDs was identified in red swamp crayfish Procambarus clarkii and designated as PcTWD. This is the first report of a protein of such domain architecture in crustaceans. Introducing the WAPDs of PcTWD into phylogenetic analysis led to the classification of crustacean WAP proteins into classical crustins and proteins containing solely WAPDs. PcTWD was widely expressed in multiple tissues, including hemocytes, gills, hepatopancreas, heart, stomach and intestine. Its expression could be significantly induced by Staphylococcus aureus or Aeromonas hydrophila challenge. Knockdown PcTWD expression by RNAi suppressed host resistance against A. hydrophila, while exogenous recombinant PcTWD could enhance the host immunity. The three WAPDs showed a labor division. The first two domains were responsible for the protease inhibitory activity, and the third domain contributed to the antimicrobial activity. Thus PcTWD was found as an important protein in crayfish antibacterial immunity.


Asunto(s)
Astacoidea/genética , Astacoidea/inmunología , Evolución Molecular , Inmunidad Innata/genética , Proteínas de la Leche/genética , Proteínas de la Leche/inmunología , Aeromonas hydrophila/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Secuencia de Bases , Perfilación de la Expresión Génica , Proteínas de la Leche/química , Filogenia , Dominios Proteicos/genética , Alineación de Secuencia , Staphylococcus aureus/fisiología
11.
J Immunol ; 198(8): 3045-3057, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28258197

RESUMEN

The recognition of pathogen-associated molecular patterns is accomplished by the recognition modules of pattern recognition receptors (PRRs). Leucine-rich repeats (LRRs) and C-type lectin-like domain (CTLD) represent the two most universal categories of recognition modules. In the current study, we identified a novel soluble and bacteria-inducible PRR comprising LRRs and a CTLD from the hepatopancreas of kuruma shrimp Marsupenaeus japonicus and named it Leulectin. The module arrangement of Leulectin is unique among all organisms. Both modules, together with the whole molecule, protected shrimp against Vibrio infection. By screening the pathogen-associated molecular patterns that shrimp might encounter, Leulectin was found to sense Vibrio flagellin through the LRRs and to recognize LPS through CTLD. The LRR-flagellin interaction was confirmed by pull-down and far-Western assays and was found to rely on the fourth LRR of Leulectin and the N terminus of flagellin. The recognition of LPS was determined by the long loop region of CTLD in a calcium-independent manner. By sensing the flagellin, LRRs could prevent its attachment to shrimp cells, thereby inhibiting Vibrio colonization. With the ability to recognize LPS, CTLD could agglutinate the bacteria and promote hemocytic phagocytosis. Our study clearly showed the division of labor and the synergy between different recognition modules and provided new insights into the concept of pattern recognition and the function of soluble PRRs in the antibacterial response.


Asunto(s)
Proteínas de Artrópodos/inmunología , Penaeidae/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Vibrio , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/genética , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Lectinas Tipo C/inmunología , Penaeidae/microbiología , Fagocitosis , Reacción en Cadena de la Polimerasa
12.
Cell Physiol Biochem ; 49(2): 706-716, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30165368

RESUMEN

BACKGROUND/AIMS: Calcium-activated chloride channels (CaCCs) regulate numerous physiological processes including cell proliferation, migration, and extracellular matrix secretion. T16Ainh-A01 and CaCCinh-A01 are selective inhibitors of CaCCs. But it is unknown whether these two compounds have functional effects on cardiac fibroblasts (CFs). METHODS: Primary CFs were obtained by enzymatic dissociation of cardiomyocytes from neonatal rat hearts. Intracellular Ca2+ ([Ca2+]i) and Cl- ([Cl-]i) were measured using the fluorescent calcium indicators (Fluo-4 AM) and N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide respectively. The expression of anoctamin-1 (ANO1) and α-smooth muscle actin (α-SMA) was detected by quantitative RT-PCR, immunofluorescence, and western blotting. A hydroxyproline assay was used to examine collagen secretion. Cell proliferation, cell cycle distribution, and cell migration were assessed by Cell Counting Kit-8, flow cytometry, and Transwell assays, respectively. RESULTS: ANO1 was preferentially expressed on the nuclear membrane and partially within intracellular compartments around the nucleus. T16Ainh-A01 and CaCCinh-A01 displayed different inhibitory effects on [Cl-]i in CFs. T16Ainh-A01 considerably decreased [Cl-]i in the nucleus, whereas CaCCinh-A01 reduced [Cl-]i in intracellular compartments around the nucleus, and both inhibitors exhibited a minimal effect on [Ca2+]i in CFs. ANO1 and α-SMA expression levels were significantly repressed by CaCCinh-A01. T16Ainh-A01 showed a marked inhibitory effect on the mRNA levels of ANO1 and α-SMA, but had a negligible effect on ANO1 at the protein level. T16Ainh-A01 and CaCCinh-A01 led to the significant repression of cell proliferation, cell migration, and collagen secretion in CFs. CONCLUSION: Our findings indicate that T16Ainh-A01 and CaCCinh-A01 have the potential to inhibit the proliferation and collagen secretion of CFs and may serve as novel anti-fibrotic therapeutic drugs in the future.


Asunto(s)
Canales de Cloruro/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Pirimidinas/farmacología , Tiazoles/farmacología , Tiofenos/farmacología , Actinas/genética , Actinas/metabolismo , Animales , Anoctamina-1/genética , Anoctamina-1/metabolismo , Calcio/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Canales de Cloruro/antagonistas & inhibidores , Cloruros/metabolismo , Colágeno/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Masculino , Miocitos Cardíacos/citología , Ratas , Ratas Sprague-Dawley
13.
J Virol ; 91(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28031362

RESUMEN

Many types of small GTPases are widely expressed in eukaryotes and have different functions. As a crucial member of the Rho GTPase family, Cdc42 serves a number of functions, such as regulating cell growth, migration, and cell movement. Several RNA viruses employ Cdc42-hijacking tactics in their target cell entry processes. However, the function of Cdc42 in shrimp antiviral immunity is not clear. In this study, we identified a Cdc42 protein in the kuruma shrimp (Marsupenaeus japonicus) and named it MjCdc42. MjCdc42 was upregulated in shrimp challenged by white spot syndrome virus (WSSV). The knockdown of MjCdc42 and injection of Cdc42 inhibitors increased the proliferation of WSSV. Further experiments determined that MjCdc42 interacted with an arginine kinase (MjAK). By analyzing the binding activity and enzyme activity of MjAK and its mutant, ΔMjAK, we found that MjAK could enhance the replication of WSSV in shrimp. MjAK interacted with the envelope protein VP26 of WSSV. An inhibitor of AK activity, quercetin, could impair the function of MjAK in WSSV replication. Further study demonstrated that the binding of MjCdc42 and MjAK depends on Cys271 of MjAK and suppresses the WSSV replication-promoting effect of MjAK. By interacting with the active site of MjAK and suppressing its enzyme activity, MjCdc42 inhibits WSSV replication in shrimp. Our results demonstrate a new function of Cdc42 in the cellular defense against viral infection in addition to the regulation of actin and phagocytosis, which has been reported in previous studies. IMPORTANCE The interaction of Cdc42 with arginine kinase plays a crucial role in the host defense against WSSV infection. This study identifies a new mechanism of Cdc42 in innate immunity and enriches the knowledge of the antiviral innate immunity of invertebrates.


Asunto(s)
Arginina Quinasa/metabolismo , Proteínas de Artrópodos/metabolismo , Penaeidae/virología , Replicación Viral , Virus del Síndrome de la Mancha Blanca 1/fisiología , Proteína de Unión al GTP cdc42/metabolismo , Secuencia de Aminoácidos , Animales , Arginina Quinasa/química , Proteínas de Artrópodos/química , Secuencia Conservada , Inducción Enzimática/inmunología , Escherichia coli , Interacciones Huésped-Patógeno , Inmunidad Innata , Simulación del Acoplamiento Molecular , Penaeidae/enzimología , Penaeidae/inmunología , Unión Proteica , Mapas de Interacción de Proteínas , Regulación hacia Arriba , Proteína de Unión al GTP cdc42/química
14.
PLoS Pathog ; 12(12): e1006127, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28027319

RESUMEN

Scavenger receptors are an important class of pattern recognition receptors that play several important roles in host defense against pathogens. The class C scavenger receptors (SRCs) have only been identified in a few invertebrates, and their role in the immune response against viruses is seldom studied. In this study, we firstly identified an SRC from kuruma shrimp, Marsupenaeus japonicus, designated MjSRC, which was significantly upregulated after white spot syndrome virus (WSSV) challenge at the mRNA and protein levels in hemocytes. The quantity of WSSV increased in shrimp after knockdown of MjSRC, compared with the controls. Furthermore, overexpression of MjSRC led to enhanced WSSV elimination via phagocytosis by hemocytes. Pull-down and co-immunoprecipitation assays demonstrated the interaction between MjSRC and the WSSV envelope protein. Electron microscopy observation indicated that the colloidal gold-labeled extracellular domain of MjSRC was located on the outer surface of WSSV. MjSRC formed a trimer and was internalized into the cytoplasm after WSSV challenge, and the internalization was strongly inhibited after knockdown of Mjß-arrestin2. Further studies found that Mjß-arrestin2 interacted with the intracellular domain of MjSRC and induced the internalization of WSSV in a clathrin-dependent manner. WSSV were co-localized with lysosomes in hemocytes and the WSSV quantity in shrimp increased after injection of lysosome inhibitor, chloroquine. Collectively, this study demonstrated that MjSRC recognized WSSV via its extracellular domain and invoked hemocyte phagocytosis to restrict WSSV systemic infection. This is the first study to report an SRC as a pattern recognition receptor promoting phagocytosis of a virus.


Asunto(s)
Penaeidae/inmunología , Penaeidae/virología , Fagocitosis/inmunología , Receptores Depuradores de Clase C/inmunología , Replicación Viral/fisiología , Virus del Síndrome de la Mancha Blanca 1 , Animales , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Inmunoprecipitación , Microscopía Electrónica de Transmisión , Receptores de Reconocimiento de Patrones/inmunología
15.
Fish Shellfish Immunol ; 80: 155-164, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29870827

RESUMEN

Prophenoloxidase (proPO) activating system is an important immune response for arthropods. ß-1, 3-glucanase related protein (previously named as lipopolysaccharide and ß-1, 3-glucan binding protein (LGBP) in crustaceans) is a typical pattern recognition receptor family involved in the proPO activation by recognizing the invading microbes. In this study, we pay special attention to a bacteria-induced ß-1,3-glucanase related protein from red swamp crayfish Procambarus clarkii, an important aquaculture specie in China. This protein, designated PcBGRP, was found a typical member of crustacean BGRP family with the glucanase-related domain and the characteristic motifs. PcBGRP was expressed in hemcoyes and hepatopancreas, and its expression could be induced by the carbohydrate and bacteria stimulants. The induction by lipopolysaccharide (LPS) and ß-1,3-glucan (ßG) was more significant than by peptidoglycan (PG). The response of PcBGRP to the native Gram-negative bacterial pathogen Aeromonas hydrophila was more obvious than to Gram-positive bacteria. Using RNA interference and recombinant protein, PcBGRP was found to protect crayfish from A. hydrophila infection revealed by the survival test and morphological analysis. A mechanism study found PcBGRP could bind LPS and ßG in a dose-dependent manner, and the LPS recognizing ability determined the Gram-negative bacterium binding activity of PcBGRP. PcBGRP was found to enhance the PO activation both in vitro and in vivo, and the protective role was related to the PO activating ability of PcBGRP. This study emphasized the role of BGRP family in crustacean immune response, and provided new insight to the immunity of red swamp crayfish which suffered serious disease during the aquaculture in China.


Asunto(s)
Proteínas de Artrópodos/inmunología , Astacoidea/inmunología , Proteínas Portadoras/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones Estafilocócicas/inmunología , Aeromonas hydrophila , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/genética , Astacoidea/genética , Proteínas Portadoras/genética , Glucano 1,3-beta-Glucosidasa/farmacología , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/veterinaria , Hemocitos/inmunología , Hepatopáncreas/inmunología , Lipopolisacáridos/farmacología , Sistemas de Lectura Abierta , Peptidoglicano/farmacología , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus
16.
Fish Shellfish Immunol ; 70: 673-681, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28951220

RESUMEN

Antimicrobial peptides (AMPs) are small effectors in host defense by directly targeting microorganisms or by indirectly modulating immune responses. In the present study, two arasin like AMPs, named as Pc-arasin1 and Pc-arasin2, were identified in red swamp crayfish Procambarus clarkii with sequence similarity to the arasins found in Hyas araneus. Both Pc-arasins consisted of signal peptide, N-terminal proline-rich region and C-terminal region containing four conserved cysteine residues. The similarity of two Pc-arasins was 44.44%, and Pc-arasin2 contained several additional residues in the N-terminus. Multiple alignment of arasin family suggested the conservation of the C-terminus and the variation of the N-terminus of Pc-arasins. Both AMPs were found hemocytes-specific, and the expression could be induced the challenge of bacteria, espeacially by the pathogenic bacterium Aeromonas hydrophila. Knockdown of each Pc-arasin expression by double strand RNA would suppress the host immunity against A. hydrophila, and the commercially synthetic Pc-arasins could rescue the knockdown consequence. Both synthetic peptide showed broad antimicrobial activity towards 3 Gram-positive bacterium and 3 Gram-negative bacterium, and the minimal inhibitory concentrations varied from 6.25 µM to 50 µM. These results presented new data about the sequence, expression and function of arasin family, and emphasized the role of this family in host immune response against bacterial pathogens. The characterization of Pc-arasins also provided potential of therapeutic agent development for disease control in aquaculture based on these two newly identified AMPs.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/inmunología , Astacoidea/genética , Astacoidea/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/química , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Secuencia de Bases , ADN , Perfilación de la Expresión Génica , Filogenia , ARN , Alineación de Secuencia
17.
J Immunol ; 193(5): 2106-17, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25070855

RESUMEN

White spot syndrome virus (WSSV) mainly infects crustaceans through the digestive tract. Whether C-type lectins (CLs), which are important receptors for many viruses, participate in WSSV infection in the shrimp stomach remains unknown. In this study, we orally infected kuruma shrimp Marsupenaeus japonicus to model the natural transmission of WSSV and identified a CL (designated as M. japonicus stomach virus-associated CL [MjsvCL]) that was significantly induced by virus infection in the stomach. Knockdown of MjsvCL expression by RNA interference suppressed the virus replication, whereas exogenous MjsvCL enhanced it. Further analysis by GST pull-down and coimmunoprecipitation showed that MjsvCL could bind to viral protein 28, the most abundant and functionally relevant envelope protein of WSSV. Furthermore, cell-surface calreticulin was identified as a receptor of MjsvCL, and the interaction between these proteins was a determinant for the viral infection-promoting activity of MjsvCL. The MjsvCL-calreticulin pathway facilitated virus entry likely in a cholesterol-dependent manner. This study provides insights into a mechanism by which soluble CLs capture and present virions to the cell-surface receptor to facilitate viral infection.


Asunto(s)
Proteínas de Artrópodos/inmunología , Calreticulina/inmunología , Lectinas Tipo C/inmunología , Penaeidae/inmunología , Proteínas Virales/inmunología , Virus del Síndrome de la Mancha Blanca 1/inmunología , Animales , Penaeidae/virología
18.
Acta Pharmacol Sin ; 37(10): 1349-1358, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27498780

RESUMEN

AIM: Glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors can not only lower blood glucose levels, but also alleviate cardiac remodeling after myocardial ischemia and hypertension. In the present study, we investigated the effects of a DPP-4 inhibitor (linagliptin) and a GLP-1 activator (liraglutide) on glucose- and angiotensin II (Ang II)-induced collagen formation and cytoskeleton reorganization in cardiac fibroblasts in vitro, and elucidated the related mechanisms. METHODS: Cardiac fibroblasts were isolated from the hearts of 6-week-old C57BL/6 mice, and then exposed to different concentrations of glucose or Ang II for 24 h. The expression of fibrotic signals (fibronectin, collagen-1, -3 and -4), as well as ERK1/2 and NF-κB-p65 in the fibroblasts was examined using Western blotting assays. F-actin degradation was detected under inverted laser confocal microscope in fibroblasts stained with Rhodamine phalloidin. RESULTS: Glucose (1-40 mmol/L) and Ang II (10-8-10-5 mol/L) dose-dependently increased the expression of fibronectin, collagens, phospho-ERK1/2 and phospho-NF-κB-p65 in cardiac fibroblasts. High concentrations of glucose (≥40 mmol/L) and Ang II (≥10-6 mol/L) caused a significant degradation of F-actin (less assembly F-actin fibers and more disassembly fibers). ERK1/2 inhibitor U0126 (10 µmol/L) and NF-κB inhibitor JSH-23 (10 µmol/L) both markedly suppressed glucose- and angiotensin II-induced fibronectin and collagen expressions in cardiac fibroblasts. Furthermore, pretreatment with liraglutide (10-100 nmol/L) or linagliptin (3 and 30 nmol/L) significantly decreased glucose- and Ang II-induced expression of fibrotic signals, phospho-ERK1/2 and phospho-NF-κB-p65 in cardiac fibroblasts. Moreover, pretreatment with liraglutide (30 nmol/L) or liraglutide (100 nmol/L) markedly inhibited glucose-induced F-actin degradation, however, only liraglutide inhibited Ang II-induced F-actin degradation. CONCLUSION: Linagliptin and liraglutide inhibit glucose- and Ang II-induced collagen formation in cardiac fibroblasts via activation of the ERK/NF-κB/pathway. Linagliptin and liraglutide also markedly inhibit glucose-induced F-actin degradation in cardiac fibroblasts, but only liraglutide inhibits Ang II-induced F-actin degradation.


Asunto(s)
Colágeno/biosíntesis , Citoesqueleto/efectos de los fármacos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Fibroblastos/efectos de los fármacos , Péptido 1 Similar al Glucagón/agonistas , Linagliptina/farmacología , Liraglutida/farmacología , Miocardio/metabolismo , Actinas/metabolismo , Angiotensina II/farmacología , Animales , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Glucosa/farmacología , Ratones , Ratones Endogámicos C57BL , Miocardio/citología
19.
J Biol Chem ; 289(4): 2405-14, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24324258

RESUMEN

Phagocytosis is a conserved cellular response among metazoans. Opsonins are some molecules that label targets to increase their susceptibility to phagocytosis. Opsonins are usually captured by receptors on the surface of phagocytes. Our previous study found the C-type lectin FcLec4 from Chinese white shrimp Fenneropenaeus chinensis might function as an opsonin to facilitate bacterial clearance. In the present study we purified the native FcLec4 protein and confirmed its opsonic activity in the near relation, kuruma shrimp Marsupenaeus japonicus. The possible receptor of FcLec4 was identified as ß-integrin by panning a T7 phage display library of shrimp hemocytes and then confirmed by co-immunoprecipitation assay. We further proved that the interaction between FcLec4 and ß-integrin did not rely on the carbohydrate recognition domain but on the N terminus of FcLec4. In addition, inhibition of FcLec4 expression using RNAi delayed bacterial clearance, and ß-integrin knockdown suppressed the opsonic activity of FcLec4. This study is the first to show the direct interaction between an opsonin and its receptor in crustaceans. Our study provides new insights into invertebrate phagocytosis and the functions of C-type lectins.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Hemocitos/metabolismo , Cadenas beta de Integrinas/metabolismo , Lectinas Tipo C/metabolismo , Penaeidae/metabolismo , Fagocitosis/fisiología , Animales , Proteínas de Artrópodos/genética , Hemocitos/citología , Cadenas beta de Integrinas/genética , Lectinas Tipo C/genética , Penaeidae/genética , Biblioteca de Péptidos
20.
J Biol Chem ; 289(17): 11779-11790, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24619414

RESUMEN

Some aquatic invertebrates such as shrimp contain low albeit stable numbers of bacteria in the circulating hemolymph. The proliferation of this hemolymph microbiota in such a nutrient-rich environment is tightly controlled in healthy animals, but the mechanisms responsible had remained elusive. In the present study, we report a C-type lectin (MjHeCL) from the kuruma shrimp (Marsupenaeus japonicus) that participates in restraining the hemolymph microbiota. Although the expression of MjHeCL did not seem to be modulated by bacterial challenge, the down-regulation of its expression by RNA interference led to proliferation of the hemolymph microbiota, ultimately resulting in shrimp death. This phenotype was rescued by the injection of recombinant MjHeCL, which restored the healthy status of the knockdown shrimp. A mechanistic analysis revealed that MjHeCL inhibited bacterial proliferation by modulating the expression of antimicrobial peptides. The key function of MjHeCL in the shrimp immune homeostasis might be related to its broader recognition spectrum of the hemolymph microbiota components than other lectins. Our study demonstrates the role of MjHeCL in maintaining the healthy status of shrimp and provides new insight into the biological significance of C-type lectins, a diversified and abundant lectin family in invertebrate species.


Asunto(s)
Antiinfecciosos/farmacología , Hemolinfa/microbiología , Lectinas Tipo C/metabolismo , Microbiota/efectos de los fármacos , Péptidos/farmacología , Animales , Secuencia de Bases , Crustáceos , Cartilla de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA