Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(6): 2044-2061, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36781395

RESUMEN

Hypocotyl elongation is an important morphological response during plant thermomorphogenesis. Multiple studies indicate that the transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) is a key regulator of high temperature-induced hypocotyl elongation. However, the underlying cellular mechanisms regarding PIF4-mediated hypocotyl elongation are largely unclear. In this study, we found that PIF4 regulates the PLANT U-BOX TYPE E3 UBIQUITIN LIGASE 31 (PUB31)-SPIRAL1 (SPR1) module and alters cortical microtubule reorganization to promote hypocotyl cell elongation during Arabidopsis thaliana (Arabidopsis) thermomorphogenesis. SPR1 loss-of-function mutants exhibit much shorter hypocotyls when grown at 28 °C, indicating a positive role for SPR1 in high ambient temperature-induced hypocotyl elongation. High ambient temperature induces SPR1 expression in a PIF4-dependent manner, and stabilizes SPR1 protein to mediate microtubule reorganization. Further investigation showed that PUB31 interacts with and ubiquitinates SPR1. In particular, the ubiquitinated effect on SPR1 was moderately decreased at high temperature, which was due to the direct binding of PIF4 to the PUB31 promoter and down-regulating its expression. Thus, this study reveals a mechanism in which PIF4 induces SPR1 expression and suppresses PUB31 expression, resulting in the accumulation and stabilization of SPR1 protein, and further promoting hypocotyl cell elongation by altering cortical microtubule organization during Arabidopsis thermomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hipocótilo/metabolismo , Fitocromo/metabolismo , Temperatura , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
2.
Plant Cell ; 35(3): 1092-1109, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36512471

RESUMEN

Tight control of lateral root (LR) initiation is vital for root system architecture and function. Regulation of cortical microtubule reorganization is involved in the asymmetric radial expansion of founder cells during LR initiation in Arabidopsis (Arabidopsis thaliana). However, critical genetic evidence on the role of microtubules in LR initiation is lacking and the mechanisms underlying this regulation are poorly understood. Here, we found that the previously uncharacterized microtubule-stabilizing protein TPX2-LIKE5 (TPXL5) participates in LR initiation, which is finely regulated by the transcription factor ELONGATED HYPOCOTYL5 (HY5). In tpxl5 mutants, LR density was decreased and more LR primordia (LRPs) remained in stage I, indicating delayed LR initiation. In particular, the cell width in the peripheral domain of LR founder cells after the first asymmetric cell division was larger in tpxl5 mutants than in the wild-type. Consistently, ordered transverse cortical microtubule arrays were not well generated in tpxl5 mutants. In addition, HY5 directly targeted the promoter of TPXL5 and downregulated TPXL5 expression. The hy5 mutant exhibited higher LR density and fewer stage I LRPs, indicating accelerated LR initiation. Such phenotypes were partially suppressed by TPXL5 knockout. Taken together, our data provide genetic evidence supporting the notion that cortical microtubules are essential for LR initiation and unravel a molecular mechanism underlying HY5 regulation of TPXL5-mediated microtubule reorganization and cell remodeling during LR initiation.


Asunto(s)
Proteínas de Arabidopsis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Proteínas del Citoesqueleto , Raíces de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , División Celular Asimétrica , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Regulación de la Expresión Génica de las Plantas , Microtúbulos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Plant Cell ; 35(1): 260-278, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36255272

RESUMEN

Drought stress triggers abscisic acid (ABA) signaling in guard cells and induces stomatal closure to prevent water loss in land plants. Stomatal movement is accompanied by reorganization of the cytoskeleton. Cortical microtubules disassemble in response to ABA, which is required for stomatal closure. However, how ABA signaling regulates microtubule disassembly is unclear, and the microtubule-associated proteins (MAPs) involved in this process remain to be identified. In this study, we show that OPEN STOMATA 1 (OST1), a central component in ABA signaling, mediates microtubule disassembly during ABA-induced stomatal closure in Arabidopsis thaliana. We identified the MAP SPIRAL1 (SPR1) as the substrate of OST1. OST1 interacts with and phosphorylates SPR1 at Ser6, which promotes the disassociation of SPR1 from microtubules and facilitates microtubule disassembly. Compared with the wild type, the spr1 mutant exhibited significantly greater water loss and reduced ABA responses, including stomatal closure and microtubule disassembly in guard cells. These phenotypes were restored by introducing the phosphorylated active form of SPR1. Our findings demonstrate that SPR1 positively regulates microtubule disassembly during ABA-induced stomatal closure, which depends on OST1-mediated phosphorylation. These findings reveal a specific connection between a core component of ABA signaling and MAPs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Microtúbulos , Proteínas Quinasas , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Estomas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Agua/metabolismo
4.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34676389

RESUMEN

The employment of doubled-haploid (DH) technology in maize has vastly accelerated the efficiency of developing inbred lines. The selection of superior lines has to rely on genotypes with genomic selection (GS) model, rather than phenotypes due to the high expense of field phenotyping. In this work, we implemented 'genome optimization via virtual simulation (GOVS)' using the genotype and phenotype data of 1404 maize lines and their F1 progeny. GOVS simulates a virtual genome encompassing the most abundant 'optimal genotypes' or 'advantageous alleles' in a genetic pool. Such a virtually optimized genome, although can never be developed in reality, may help plot the optimal route to direct breeding decisions. GOVS assists in the selection of superior lines based on the genomic fragments that a line contributes to the simulated genome. The assumption is that the more fragments of optimal genotypes a line contributes to the assembly, the higher the likelihood of the line favored in the F1 phenotype, e.g. grain yield. Compared to traditional GS method, GOVS-assisted selection may avoid using an arbitrary threshold for the predicted F1 yield to assist selection. Additionally, the selected lines contributed complementary sets of advantageous alleles to the virtual genome. This feature facilitates plotting the optimal route for DH production, whereby the fewest lines and F1 combinations are needed to pyramid a maximum number of advantageous alleles in the new DH lines. In summary, incorporation of DH production, GS and genome optimization will ultimately improve genomically designed breeding in maize. Short abstract: Doubled-haploid (DH) technology has been widely applied in maize breeding industry, as it greatly shortens the period of developing homozygous inbred lines via bypassing several rounds of self-crossing. The current challenge is how to efficiently screen the large volume of inbred lines based on genotypes. We present the toolbox of genome optimization via virtual simulation (GOVS), which complements the traditional genomic selection model. GOVS simulates a virtual genome encompassing the most abundant 'optimal genotypes' in a breeding population, and then assists in selection of superior lines based on the genomic fragments that a line contributes to the simulated genome. Availability of GOVS (https://govs-pack.github.io/) to the public may ultimately facilitate genomically designed breeding in maize.


Asunto(s)
Fitomejoramiento , Zea mays , Genotipo , Haploidia , Fenotipo , Fitomejoramiento/métodos , Zea mays/genética
5.
New Phytol ; 241(6): 2606-2620, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38291701

RESUMEN

The advent of full-length transcriptome sequencing technologies has accelerated the discovery of novel splicing isoforms. However, existing alternative splicing (AS) tools are either tailored for short-read RNA-Seq data or designed for human and animal studies. The disparities in AS patterns between plants and animals still pose a challenge to the reliable identification and functional exploration of novel isoforms in plants. Here, we developed integrated full-length alternative splicing analysis (iFLAS), a plant-optimized AS toolkit that introduced a semi-supervised machine learning method known as positive-unlabeled (PU) learning to accurately identify novel isoforms. iFLAS also enables the investigation of AS functions from various perspectives, such as differential AS, poly(A) tail length, and allele-specific AS (ASAS) analyses. By applying iFLAS to three full-length transcriptome sequencing datasets, we systematically identified and functionally characterized maize (Zea mays) AS patterns. We found intron retention not only introduces premature termination codons, resulting in lower expression levels of isoforms, but may also regulate the length of 3'UTR and poly(A) tail, thereby affecting the functional differentiation of isoforms. Moreover, we observed distinct ASAS patterns in two genes within heterosis offspring, highlighting their potential value in breeding. These results underscore the broad applicability of iFLAS in plant full-length transcriptome-based AS research.


Asunto(s)
Empalme Alternativo , Transcriptoma , Humanos , Empalme Alternativo/genética , Transcriptoma/genética , Zea mays/genética , Perfilación de la Expresión Génica/métodos , Fitomejoramiento , Isoformas de Proteínas/genética , ARN Mensajero/genética , Análisis de Secuencia de ARN
6.
Plant Cell ; 33(6): 1927-1944, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-33730147

RESUMEN

The unique apical hook in dicotyledonous plants protects the shoot apical meristem and cotyledons when seedlings emerge through the soil. Its formation involves differential cell growth under the coordinated control of plant hormones, especially ethylene and auxin. Microtubules are essential players in plant cell growth that are regulated by multiple microtubule-associated proteins (MAPs). However, the role and underlying mechanisms of MAP-microtubule modules in differential cell growth are poorly understood. In this study, we found that the previously uncharacterized Arabidopsis MAP WAVE-DAMPENED2-LIKE4 (WDL4) protein plays a positive role in apical hook opening. WDL4 exhibits a temporal expression pattern during hook development in dark-grown seedlings that is directly regulated by ethylene signaling. WDL4 mutants showed a delayed hook opening phenotype while overexpression of WDL4 resulted in enhanced hook opening. In particular, wdl4-1 mutants exhibited stronger auxin accumulation in the concave side of the apical hook. Furthermore, the regulation of the auxin maxima and trafficking of the auxin efflux carriers PIN-FORMED1 (PIN1) and PIN7 in the hook region is critical for WDL4-mediated hook opening. Together, our study demonstrates that WDL4 positively regulates apical hook opening by modulating auxin distribution, thus unraveling a mechanism for MAP-mediated differential plant cell growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Asociadas a Microtúbulos/genética , Células Vegetales , Plantas Modificadas Genéticamente , Transporte de Proteínas , Plantones/fisiología , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Plant J ; 111(6): 1527-1538, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35821601

RESUMEN

Advances in high-throughput omics technologies are leading plant biology research into the era of big data. Machine learning (ML) performs an important role in plant systems biology because of its excellent performance and wide application in the analysis of big data. However, to achieve ideal performance, supervised ML algorithms require large numbers of labeled samples as training data. In some cases, it is impossible or prohibitively expensive to obtain enough labeled training data; here, the paradigms of unsupervised learning (UL) and semi-supervised learning (SSL) play an indispensable role. In this review, we first introduce the basic concepts of ML techniques, as well as some representative UL and SSL algorithms, including clustering, dimensionality reduction, self-supervised learning (self-SL), positive-unlabeled (PU) learning and transfer learning. We then review recent advances and applications of UL and SSL paradigms in both plant systems biology and plant phenotyping research. Finally, we discuss the limitations and highlight the significance and challenges of UL and SSL strategies in plant systems biology.


Asunto(s)
Aprendizaje Automático Supervisado , Biología de Sistemas , Algoritmos , Aprendizaje Automático , Plantas/genética
8.
New Phytol ; 240(6): 2468-2483, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37823217

RESUMEN

Meloidogyne enterolobii is an emerging root-knot nematode species that overcomes most of the nematode resistance genes in crops. Nematode effector proteins secreted in planta are key elements in the molecular dialogue of parasitism. Here, we show the MeMSP1 effector is secreted into giant cells and promotes M. enterolobii parasitism. Using co-immunoprecipitation and bimolecular fluorescent complementation assays, we identified glutathione-S-transferase phi GSTFs as host targets of the MeMSP1 effector. This protein family plays important roles in plant responses to abiotic and biotic stresses. We demonstrate that MeMSP1 interacts with all Arabidopsis GSTF. Moreover, we confirmed that the N-terminal region of AtGSTF9 is critical for its interaction, and atgstf9 mutant lines are more susceptible to root-knot nematode infection. Combined transcriptome and metabolome analyses showed that MeMSP1 affects the metabolic pathways of Arabidopsis thaliana, resulting in the accumulation of amino acids, nucleic acids, and their metabolites, and organic acids and the downregulation of flavonoids. Our study has shed light on a novel effector mechanism that targets plant metabolism, reducing the production of plant defence-related compounds while favouring the accumulation of metabolites beneficial to the nematode, and thereby promoting parasitism.


Asunto(s)
Arabidopsis , Tylenchoidea , Animales , Arabidopsis/genética , Interacciones Huésped-Parásitos , Tylenchoidea/fisiología , Glutatión Transferasa/metabolismo , Glutatión/metabolismo , Enfermedades de las Plantas/genética
9.
New Phytol ; 240(1): 41-60, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37507353

RESUMEN

The endomembrane system consists of various membrane-bound organelles including the endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN), endosomes, and the lysosome/vacuole. Membrane trafficking between distinct compartments is mainly achieved by vesicular transport. As the endomembrane compartments and the machineries regulating the membrane trafficking are largely conserved across all eukaryotes, our current knowledge on organelle biogenesis and endomembrane trafficking in plants has mainly been shaped by corresponding studies in mammals and yeast. However, unique perspectives have emerged from plant cell biology research through the characterization of plant-specific regulators as well as the development and application of the state-of-the-art microscopical techniques. In this review, we summarize our current knowledge on the plant endomembrane system, with a focus on several distinct pathways: ER-to-Golgi transport, protein sorting at the TGN, endosomal sorting on multivesicular bodies, vacuolar trafficking/vacuole biogenesis, and the autophagy pathway. We also give an update on advanced imaging techniques for the plant cell biology research.


Asunto(s)
Endosomas , Plantas , Plantas/metabolismo , Endosomas/metabolismo , Vacuolas/metabolismo , Cuerpos Multivesiculares/metabolismo , Transporte de Proteínas , Aparato de Golgi/metabolismo , Red trans-Golgi/metabolismo
10.
Plant Physiol ; 188(4): 2085-2100, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35134219

RESUMEN

Stomatal movement is essential for plants to optimize transpiration and therefore photosynthesis. Rapid changes in the stomatal aperture are accompanied by adjustment of vacuole volume and morphology in guard cells (GCs). In Arabidopsis (Arabidopsis thaliana) leaf epidermis, stomatal development undergoes a cell-fate transition including four stomatal lineage cells: meristemoid, guard mother cell, young GC, and GC. Little is known about the mechanism underlying vacuole dynamics and vacuole formation during stomatal development. Here, we utilized whole-cell electron tomography (ET) analysis to elucidate vacuole morphology, formation, and development in different stages of stomatal lineage cells at nanometer resolution. The whole-cell ET models demonstrated that large vacuoles were generated from small vacuole stepwise fusion/maturation along stomatal development stages. Further ET analyses verified the existence of swollen intraluminal vesicles inside distinct vacuoles at certain developmental stages of stomatal lineage cells, implying a role of multivesicular body fusion in stomatal vacuole formation. Collectively, our findings demonstrate a mechanism mediating vacuole formation in Arabidopsis stomatal development and may shed light on the role of vacuoles in stomatal movement.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Tomografía con Microscopio Electrónico , Estomas de Plantas , Vacuolas
11.
Opt Express ; 31(23): 38540-38549, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38017957

RESUMEN

Compared to other parts of the electromagnetic spectrum, the terahertz frequency range lacks efficient polarization manipulation techniques, which is impeding the proliferation of terahertz technology. In this work, we demonstrate a tunable and broadband linear-to-circular polarization converter based on an InSb plate containing a free-carrier magnetoplasma. In a wide spectral region (∼ 0.45 THz), the magnetoplasma selectively absorbs one circularly polarized mode due to electron cyclotron resonance and also reflects it at the edges of the absorption band. Both effects are nonreciprocal and contribute to form a near-zero transmission band with a high isolation of -36 dB, resulting in the output of a near-perfect circularly polarized terahertz wave for an incident linearly polarized beam. The near-zero transmission band is tunable with magnetic field to cover a wide frequency range from 0.3 to 4.8 THz.

12.
Plant Cell ; 32(4): 1102-1123, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32034034

RESUMEN

Cultivated sweet potato (Ipomoea batatas) is an important source of food for both humans and domesticated animals. Here, we show that the B-box (BBX) family transcription factor IbBBX24 regulates the jasmonic acid (JA) pathway in sweet potato. When IbBBX24 was overexpressed in sweet potato, JA accumulation increased, whereas silencing this gene decreased JA levels. RNA sequencing analysis revealed that IbBBX24 modulates the expression of genes involved in the JA pathway. IbBBX24 regulates JA responses by antagonizing the JA signaling repressor IbJAZ10, which relieves IbJAZ10's repression of IbMYC2, a JA signaling activator. IbBBX24 binds to the IbJAZ10 promoter and activates its transcription, whereas it represses the transcription of IbMYC2 The interaction between IbBBX24 and IbJAZ10 interferes with IbJAZ10's repression of IbMYC2, thereby promoting the transcriptional activity of IbMYC2. Overexpressing IbBBX24 significantly increased Fusarium wilt disease resistance, suggesting that JA responses play a crucial role in regulating Fusarium wilt resistance in sweet potato. Finally, overexpressing IbBBX24 led to increased yields in sweet potato. Together, our findings indicate that IbBBX24 plays a pivotal role in regulating JA biosynthesis and signaling and increasing Fusarium wilt resistance and yield in sweet potato, thus providing a candidate gene for developing elite crop varieties with enhanced pathogen resistance but without yield penalty.


Asunto(s)
Ciclopentanos/metabolismo , Resistencia a la Enfermedad , Fusarium/fisiología , Ipomoea batatas/inmunología , Ipomoea batatas/microbiología , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Acetatos/farmacología , Secuencia de Bases , Ciclopentanos/farmacología , ADN de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genoma de Planta , Ipomoea batatas/genética , Ipomoea batatas/crecimiento & desarrollo , Modelos Biológicos , Oxilipinas/farmacología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Nicotiana/genética , Nicotiana/microbiología , Transcripción Genética/efectos de los fármacos
13.
Proc Natl Acad Sci U S A ; 117(9): 4623-4631, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071222

RESUMEN

The successful application of heterosis in hybrid rice has dramatically improved rice productivity, but the genetic mechanism for heterosis in the hybrid rice remains unclear. In this study, we generated two populations of rice F1 hybrids with present-day commercial hybrid parents, genotyped the parents with 50k SNP chip and genome resequencing, and recorded the phenotype of ∼2,000 hybrids at three field trials. By integrating these data with the collected genotypes of ∼4,200 rice landraces and improved varieties that were reported previously, we found that the male and female parents have different levels of genome introgressions from other rice subpopulations, including indica, aus, and japonica, therefore shaping heterotic loci in the hybrids. Among the introgressed exogenous genome, we found that heterotic loci, including Ghd8/DTH8, Gn1a, and IPA1 existed in wild rice, but were significantly divergently selected among the rice subpopulations, suggesting these loci were subject to environmental adaptation. During modern rice hybrid breeding, heterotic loci were further selected by removing loci with negative effect and fixing loci with positive effect and pyramid breeding. Our results provide insight into the genetic basis underlying the heterosis of elite hybrid rice varieties, which could facilitate a better understanding of heterosis and rice hybrid breeding.


Asunto(s)
Introgresión Genética , Vigor Híbrido , Oryza/genética , Selección Genética , Genoma de Planta , Fitomejoramiento/métodos
14.
Opt Express ; 30(2): 957-965, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209273

RESUMEN

Reverse design is a frontier direction in the optical research field. In this work, reverse design is applied to the design of terahertz devices. We have employed direct binary search (DBS) and binary particle swarm optimization (BPSO) algorithms to design pixel-type terahertz band-pass filters, respectively. Through a comparative analysis of the designed devices, we found that BPSO algorithm converged faster than DBS algorithm, and the device performance is better on out-of-band suppression. We have fabricated a sample utilizing femtosecond laser micromachining and characterized it by terahertz time-domain spectroscopy. The experimental results were consistent with the finite difference time domain (FDTD) simulation. Our method can simultaneously optimize multiple characteristics of the band-pass filters, including the peak transmittance, out-of-band transmittance, bandwidth, and polarization stability, which can not be achieved by traditional optical design methods.

15.
Mediators Inflamm ; 2022: 3288262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110099

RESUMEN

Postoperative cognitive dysfunction (POCD) is consequence of anesthesia and surgery that primarily affects older people. The prevention and treatment of POCD has drawn an increasing attention in recent decades. Here, we established the animal model mimicked POCD after femoral fracture surgery, and analyze the effect of acupuncture stimulation on postoperative cognitive function after femoral fracture surgery. Compared with the mock group, the cognitive function performance was significantly decreased both in the anaesthesia group and the surgery group, between which the symptoms were more severe in the surgery group. The peripheral inflammation response and the neuron impairment and inflammation response in the hippocampus were observed in the surgery group, but only peripheral inflammation response was detected in the anaesthesia group. These findings indicated the POCD was the synergistic outcome of anaesthesia and surgical stimulation but with different pathogenic mechanism. The surgery with mental tri-needles (surgery+MTN) group outperformed the surgery group in terms of cognitive function performance. The peripheral inflammation response and the neuron impairment and inflammation response in the hippocampus was significantly reduced by the electroacupuncture stimulation. Our findings indicated the protection of electroacupuncture form POCD after femoral fracture surgery is related to the inhibition of inflammation response and neuron impairment.


Asunto(s)
Electroacupuntura , Fracturas del Fémur , Complicaciones Cognitivas Postoperatorias , Animales , Fracturas del Fémur/cirugía , Hipocampo , Humanos , Inflamación/terapia , Neuronas , Complicaciones Posoperatorias/terapia
16.
Proc Natl Acad Sci U S A ; 116(36): 18132-18141, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31431522

RESUMEN

Stomatal movement is essential for plant growth. This process is precisely regulated by various cellular activities in guard cells. F-actin dynamics and vacuole morphology are both involved in stomatal movement. The sorting of cargoes by clathrin adaptor protein (AP) complexes from the Golgi to the vacuole is critical for establishing a normal vacuole morphology. In this study, we demonstrate that the medium subunit of the AP3 complex (AP3M) binds to and severs actin filaments in vitro and that it participates in the sorting of cargoes (such as the sucrose exporter SUC4) to the tonoplast, and thereby regulates stomatal closure in Arabidopsis thaliana Defects in AP3 or SUC4 led to more rapid water loss and delayed stomatal closure, as well as hypersensitivity to drought stress. In ap3m mutants, the F-actin status was altered compared to the wild type, and the sorted cargoes failed to localize to the tonoplast. AP3M contains a previously unidentified F-actin binding domain that is conserved in AP3M homologs in both plants and animals. Mutations in the F-actin binding domain of AP3M abolished its F-actin binding activity in vitro, leading to an aberrant vacuole morphology and reduced levels of SUC4 on the tonoplast in guard cells. Our findings indicate that the F-actin binding activity of AP3M is required for the precise localization of AP3-dependent cargoes to the tonoplast and for the regulation of vacuole morphology in guard cells during stomatal closure.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Complejo 3 de Proteína Adaptadora/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Estomas de Plantas/metabolismo , Vacuolas/metabolismo , Citoesqueleto de Actina/genética , Complejo 3 de Proteína Adaptadora/genética , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Estomas de Plantas/citología , Estomas de Plantas/genética , Vacuolas/genética
17.
Plant J ; 102(1): 116-128, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31736145

RESUMEN

Heterosis is the phenomenon in which hybrid progeny exhibits superior traits in comparison with those of their parents. Genomic variations between the two parental genomes may generate epistasis interactions, which is one of the genetic hypotheses explaining heterosis. We postulate that protein-protein interactions specific to F1 hybrids (F1 -specific PPIs) may occur when two parental genomes combine, as the proteome of each parent may supply novel interacting partners. To test our assumption, an inter-subspecies hybrid interactome was simulated by in silico PPI prediction between rice japonica (cultivar Nipponbare) and indica (cultivar 9311). Four-thousand, six-hundred and twelve F1 -specific PPIs accounting for 20.5% of total PPIs in the hybrid interactome were found. Genes participating in F1 -specific PPIs tend to encode metabolic enzymes and are generally localized in genomic regions harboring metabolic gene clusters. To test the genetic effect of F1 -specific PPIs in heterosis, genomic selection analysis was performed for trait prediction with additive, dominant and epistatic effects separately considered in the model. We found that the removal of single nucleotide polymorphisms associated with F1 -specific PPIs reduced prediction accuracy when epistatic effects were considered in the model, but no significant changes were observed when additive or dominant effects were considered. In summary, genomic divergence widely dispersed between japonica and indica rice may generate F1 -specific PPIs, part of which may accumulatively contribute to heterosis according to our computational analysis. These candidate F1 -specific PPIs, especially for those involved in metabolic biosynthesis pathways, are worthy of experimental validation when large-scale protein interactome datasets are generated in hybrid rice in the future.


Asunto(s)
Epistasis Genética , Vigor Híbrido , Oryza/genética , Proteínas de Plantas/genética , Mapas de Interacción de Proteínas , Epistasis Genética/genética , Vigor Híbrido/genética , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Mutación Missense , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Mapas de Interacción de Proteínas/genética
18.
New Phytol ; 230(6): 2355-2370, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33666235

RESUMEN

The farmland of the world's main corn-producing area is increasingly affected by salt stress. Therefore, the breeding of salt-tolerant cultivars is necessary for the long-term sustainability of global corn production. Previous studies have shown that natural maize varieties display a large diversity of salt tolerance, yet the genetic variants underlying such diversity remain poorly discovered and applied, especially those mediating the tolerance to salt-induced osmotic stress (SIOS). Here we report a metabolomics-driven understanding and genetic improvement of maize SIOS tolerance. Using a LC-MS-based untargeted metabolomics approach, we profiled the metabolomes of 266 maize inbred lines under control and salt conditions, and then identified 37 metabolite biomarkers of SIOS tolerance (METO1-37). Follow-up metabolic GWAS (mGWAS) and genotype-to-phenotype modeling identified 10 candidate genes significantly associating with the SIOS tolerance and METO abundances. Furthermore, we validated that a citrate synthase, a glucosyltransferase and a cytochrome P450 underlie the genotype-METO-SIOS tolerance associations, and showed that their favorable alleles additively improve the SIOS tolerance of elite maize inbred lines. Our study provides a novel insight into the natural variation of maize SIOS tolerance, which boosts the genetic improvement of maize salt tolerance, and demonstrates a metabolomics-based approach for mining crop genes associated with this complex agronomic trait.


Asunto(s)
Fitomejoramiento , Zea mays , Metabolómica , Presión Osmótica , Fenotipo , Zea mays/genética
19.
Opt Express ; 29(6): 9261-9268, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33820358

RESUMEN

Plasma edges in metals typically occur in the visible range, producing characteristic colors of metals. In a lightly doped semiconductor, the plasma edge can occur in the terahertz (THz) frequency range. Due to low scattering rates and variable electron densities in semiconductors, such THz plasma edges can be extremely sharp and greatly tunable. Here, we show that an ultrasharp THz plasma edge exists in a lightly n-doped InSb crystal with a record-high transmittance slope of 80 dB/THz. The frequency at which this sharp edge happens can be readily tuned by changing the temperature, electron density, scattering rate, and sample thickness. The edge frequency exhibited a surprising increase with decreasing temperature below 15 K, which we explain as a result of a weak-to-strong transition in the scattering rate, going from ωτ  ≫ 1 to ωτ âˆ¼ 1. These results indicate that doped narrow-gap semiconductors provide a versatile platform for manipulating THz waves in a controllable manner, especially as a high-pass filter with an unprecedented on/off ratio.

20.
Plant Cell ; 30(10): 2425-2446, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30262552

RESUMEN

Development of the cereal endosperm involves cell differentiation processes that enable nutrient uptake from the maternal plant, accumulation of storage products, and their utilization during germination. However, little is known about the regulatory mechanisms that link cell differentiation processes with those controlling storage product synthesis and deposition, including the activation of zein genes by the maize (Zea mays) bZIP transcription factor Opaque-2 (O2). Here, we mapped in vivo binding sites of O2 in B73 endosperm and compared the results with genes differentially expressed in B73 and B73o2 We identified 186 putative direct O2 targets and 1677 indirect targets, encoding a broad set of gene functionalities. Examination of the temporal expression patterns of O2 targets revealed at least two distinct modes of O2-mediated gene activation. Two O2-activated genes, bZIP17 and NAKED ENDOSPERM2 (NKD2), encode transcription factors, which can in turn coactivate other O2 network genes with O2. NKD2 (with its paralog NKD1) was previously shown to be involved in regulation of aleurone development. Collectively, our results provide insights into the complexity of the O2-regulated network and its role in regulation of endosperm cell differentiation and function.


Asunto(s)
Endospermo/citología , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Zea mays/genética , Sitios de Unión , Diferenciación Celular , Inmunoprecipitación de Cromatina , Endospermo/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Células Vegetales/fisiología , Proteínas de Plantas/metabolismo , Zea mays/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA