RESUMEN
Van der Waals encapsulation of two-dimensional materials in hexagonal boron nitride (hBN) stacks is a promising way to create ultrahigh-performance electronic devices1-4. However, contemporary approaches for achieving van der Waals encapsulation, which involve artificial layer stacking using mechanical transfer techniques, are difficult to control, prone to contamination and unscalable. Here we report the transfer-free direct growth of high-quality graphene nanoribbons (GNRs) in hBN stacks. The as-grown embedded GNRs exhibit highly desirable features being ultralong (up to 0.25 mm), ultranarrow (<5 nm) and homochiral with zigzag edges. Our atomistic simulations show that the mechanism underlying the embedded growth involves ultralow GNR friction when sliding between AA'-stacked hBN layers. Using the grown structures, we demonstrate the transfer-free fabrication of embedded GNR field-effect devices that exhibit excellent performance at room temperature with mobilities of up to 4,600 cm2 V-1 s-1 and on-off ratios of up to 106. This paves the way for the bottom-up fabrication of high-performance electronic devices based on embedded layered materials.
RESUMEN
Ageing is a critical factor in spinal-cord-associated disorders1, yet the ageing-specific mechanisms underlying this relationship remain poorly understood. Here, to address this knowledge gap, we combined single-nucleus RNA-sequencing analysis with behavioural and neurophysiological analysis in non-human primates (NHPs). We identified motor neuron senescence and neuroinflammation with microglial hyperactivation as intertwined hallmarks of spinal cord ageing. As an underlying mechanism, we identified a neurotoxic microglial state demarcated by elevated expression of CHIT1 (a secreted mammalian chitinase) specific to the aged spinal cords in NHP and human biopsies. In the aged spinal cord, CHIT1-positive microglia preferentially localize around motor neurons, and they have the ability to trigger senescence, partly by activating SMAD signalling. We further validated the driving role of secreted CHIT1 on MN senescence using multimodal experiments both in vivo, using the NHP spinal cord as a model, and in vitro, using a sophisticated system modelling the human motor-neuron-microenvironment interplay. Moreover, we demonstrated that ascorbic acid, a geroprotective compound, counteracted the pro-senescent effect of CHIT1 and mitigated motor neuron senescence in aged monkeys. Our findings provide the single-cell resolution cellular and molecular landscape of the aged primate spinal cord and identify a new biomarker and intervention target for spinal cord degeneration.
Asunto(s)
Senescencia Celular , Quitinasas , Microglía , Neuronas Motoras , Primates , Médula Espinal , Animales , Humanos , Biomarcadores/metabolismo , Quitinasas/metabolismo , Microglía/enzimología , Microglía/metabolismo , Microglía/patología , Neuronas Motoras/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Primates/metabolismo , Reproducibilidad de los Resultados , Análisis de Expresión Génica de una Sola Célula , Médula Espinal/metabolismo , Médula Espinal/patologíaRESUMEN
The hippocampus is an important part of the limbic system in the human brain that has essential roles in spatial navigation and the consolidation of information from short-term memory to long-term memory1,2. Here we use single-cell RNA sequencing and assay for transposase-accessible chromatin using sequencing (ATAC-seq) analysis to illustrate the cell types, cell linage, molecular features and transcriptional regulation of the developing human hippocampus. Using the transcriptomes of 30,416 cells from the human hippocampus at gestational weeks 16-27, we identify 47 cell subtypes and their developmental trajectories. We also identify the migrating paths and cell lineages of PAX6+ and HOPX+ hippocampal progenitors, and regional markers of CA1, CA3 and dentate gyrus neurons. Multiomic data have uncovered transcriptional regulatory networks of the dentate gyrus marker PROX1. We also illustrate spatially specific gene expression in the developing human prefrontal cortex and hippocampus. The molecular features of the human hippocampus at gestational weeks 16-20 are similar to those of the mouse at postnatal days 0-5 and reveal gene expression differences between the two species. Transient expression of the primate-specific gene NBPF1 leads to a marked increase in PROX1+ cells in the mouse hippocampus. These data provides a blueprint for understanding human hippocampal development and a tool for investigating related diseases.
Asunto(s)
Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica/genética , Hipocampo/citología , Hipocampo/embriología , Animales , Proteínas Portadoras/metabolismo , Giro Dentado/citología , Giro Dentado/embriología , Giro Dentado/metabolismo , Evolución Molecular , Femenino , Hipocampo/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Factor de Transcripción PAX6/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/embriología , Corteza Prefrontal/metabolismo , Especificidad de la Especie , Transcriptoma/genética , Proteínas Supresoras de Tumor/metabolismoRESUMEN
The brain is the central hub of the entire nervous system. Its development is a lifelong process guided by a genetic blueprint. Understanding how genes influence brain development is critical for deciphering the formation of human cognitive functions and the underlying mechanisms of neurological disorders. Recent advances in multi-omics techniques have now made it possible to explore these aspects comprehensively. However, integrating and analyzing extensive multi-omics data presents significant challenges. Here, we introduced MAPbrain (http://bigdata.ibp.ac.cn/mapBRAIN/), a multi-omics atlas of the primate brain. This repository integrates and normalizes both our own lab's published data and publicly available multi-omics data, encompassing 21 million brain cells from 38 key brain regions and 436 sub-regions across embryonic and adult stages, with 164 time points in humans and non-human primates. MAPbrain offers a unique, robust, and interactive platform that includes transcriptomics, epigenomics, and spatial transcriptomics data, facilitating a comprehensive exploration of brain development. The platform enables the exploration of cell type- and time point-specific markers, gene expression comparison between brain regions and species, joint analyses across transcriptome and epigenome, and navigation of cell types across species, brain regions, and development stages. Additionally, MAPbrain provides an online integration module for users to navigate and analyze their own data within the platform.
RESUMEN
Sepsis is a life-threatening condition characterized by organ dysfunction resulting from a dysregulated host response to infection. Dysregulated tryptophan (TRP) metabolites serve as significant indicators for endogenous immune turnovers and abnormal metabolism in the intestinal microbiota during sepsis. Therefore, a high coverage determination of TRP and its metabolites in sepsis is beneficial for the diagnosis and prognosis of sepsis, as well as for understanding the underlying mechanism of sepsis development. However, similar structures in TRP metabolites make it challenging for separation and metabolite identification. Here, high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD) was developed to determine TRP metabolites in rat serum. The first-order derivative spectrophotometry of targeted metabolites in the serum was investigated and proved to be promising for chromatographic peak annotation across different columns and systems. The established method separating the targeted metabolites was optimized and validated to be sensitive and accurate. Application of the method revealed dysregulated TRP metabolites, associated with immune disorders and NAD + metabolism in both the host and gut flora in septic rats. Our findings indicate that the derivative spectrophotometry-assisted method enhances metabolite identifications for the chromatographic systems based on DAD detectors and holds promise for precision medicine in sepsis.
Asunto(s)
Microbioma Gastrointestinal , Sepsis , Triptófano , Triptófano/metabolismo , Animales , Sepsis/microbiología , Sepsis/metabolismo , Ratas , Cromatografía Líquida de Alta Presión/métodos , Masculino , Ratas Sprague-Dawley , EspectrofotometríaRESUMEN
BACKGROUND: The transcription factor BACH1 (BTB and CNC homology 1) suppressed endothelial cells (ECs) proliferation and migration and impaired angiogenesis in the ischemic hindlimbs of adult mice. However, the role and underlying mechanisms of BACH1 in atherosclerosis remain unclear. METHODS: Mouse models of atherosclerosis in endothelial cell (EC)-specific-Bach1 knockout mice were used to study the role of BACH1 in the regulation of atherogenesis and the underlying mechanisms. RESULTS: Genetic analyses revealed that coronary artery disease-associated risk variant rs2832227 was associated with BACH1 gene expression in carotid plaques from patients. BACH1 was upregulated in ECs of human and mouse atherosclerotic plaques. Endothelial Bach1 deficiency decreased turbulent blood flow- or western diet-induced atherosclerotic lesions, macrophage content in plaques, expression of endothelial adhesion molecules (ICAM1 [intercellular cell adhesion molecule-1] and VCAM1 [vascular cell adhesion molecule-1]), and reduced plasma TNF-α (tumor necrosis factor-α) and IL-1ß levels in atherosclerotic mice. BACH1 deletion or knockdown inhibited monocyte-endothelial adhesion and reduced oscillatory shear stress or TNF-α-mediated induction of endothelial adhesion molecules and/or proinflammatory cytokines in mouse ECs, human umbilical vein ECs, and human aortic ECs. Mechanistic studies showed that upon oscillatory shear stress or TNF-α stimulation, BACH1 and YAP (yes-associated protein) were induced and translocated into the nucleus in ECs. BACH1 upregulated YAP expression by binding to the YAP promoter. BACH1 formed a complex with YAP inducing the transcription of adhesion molecules. YAP overexpression in ECs counteracted the antiatherosclerotic effect mediated by Bach1-deletion in mice. Rosuvastatin inhibited BACH1 expression by upregulating microRNA let-7a in ECs, and decreased Bach1 expression in the vascular endothelium of hyperlipidemic mice. BACH1 was colocalized with YAP, and the expression of BACH1 was positively correlated with YAP and proinflammatory genes, as well as adhesion molecules in human atherosclerotic plaques. CONCLUSIONS: These data identify BACH1 as a mechanosensor of hemodynamic stress and reveal that the BACH1-YAP transcriptional network is essential to vascular inflammation and atherogenesis. BACH1 shows potential as a novel therapeutic target in atherosclerosis.
Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/prevención & control , Ratones , Ratones Endogámicos C57BL , Placa Aterosclerótica/patología , Factores de Transcripción/metabolismoRESUMEN
Methionine and choline both are essential nutrients which are needed for methyl group metabolism. A methionine-choline-deficient (MCD) diet leads to pathological changes in the kidney. The mechanism of the MCD diet is complex, and fundamental research is still required to provide a better understanding of the driving forces behind it. We evaluated the regional effects of the MCD diet on the metabolites of mouse kidney tissue using desorption electrospray ionization mass spectrometry imaging technology. A total of 20, 17, and 13 metabolites were significantly changed in the cortex, outer medulla, and inner medulla, respectively, of the mouse kidney tissue after the administration of the MCD diet. Among the discriminating metabolites, only three metabolites (guanidoacetic acid, serine, and nicotinamide riboside) were significantly increased, and all the other metabolites showed a significant decrease. The results showed that there were significant region-specific changes in the serine metabolism, carnitine metabolism, choline metabolism, and arginine metabolism. This study presents unique regional metabolic data, providing a more comprehensive understanding of the molecular characteristics of the MCD diet in the kidney.
Asunto(s)
Colina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Colina/análisis , Metionina/metabolismo , Racemetionina/metabolismo , Racemetionina/farmacología , Dieta , Espectrometría de Masas , Riñón/metabolismo , Serina/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismoRESUMEN
Metabolic dysregulation in the ischemic region has been increasingly recognized as a contributing factor to ischemic stroke pathogenesis. Taohong Siwu decoction (THSWD), a traditional Chinese medicine preparation used to enhance blood circulation, is frequently employed in treating ischemic stroke. However, the metabolic regulatory mechanism underlying the therapeutic effects of THSWD in ischemic stroke remains largely unexplored. In this study, we employed desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to investigate the metabolic changes in the brain tissue of ischemic stroke rat model. Our investigation revealed that 30 metabolites exhibited significant dysregulation in the ischemic brain regions, specifically the cortex and striatum, following ischemic injury. Following the treatment of THSWD, almost all the dysregulated metabolites got different degrees of callback. Further pathway analysis indicated that THSWD might exert its therapeutic effects by restoring energy metabolism, improving neurotransmitter metabolism, recovering polyamine metabolism, and so on. DESI-MSI offers a favorable methodology for investigating the alterations in the spatial distribution and level within the ischemic brain region following treatment with THSWD in ischemic stroke. These findings provide a novel perspective on the underlying mechanisms of the efficacy of THSWD in ischemic stroke treatment.
RESUMEN
BACKGROUND: Lp-PLA2 is linked to cardiovascular diseases and poor outcomes, especially in diabetes, as it functions as a pro-inflammatory and oxidative mediator. OBJECTIVES: This research aimed to explore if there is a connection between the serum levels of Lp-PLA2 and the progression of coronary plaques (PP) in individuals with type 2 diabetes mellitus (T2DM) and those without the condition. MATERIALS AND METHODS: Serum Lp-PLA2 levels were measured in 137 T2DM patients with PP and 137 T2DM patients with no PP, and in 205 non-diabetic patients with PP and 205 non-diabetic patients with no PP. These individuals met the criteria for eligibility and underwent quantitative coronary angiography at the outset and again after about one year of follow-up. The attributes and parameters of the participants at the outset were recorded. RESULTS: Increased serum levels of Lp-PLA2 were closely associated with coronary artery PP, and also significantly correlated with change of MLD, change of diameter stenosis and change of cumulative coronary obstruction in both diabetic and non-diabetic groups, with higher correlation coefficients in diabetic patients as compared with non-diabetic patients. Moreover, multivariate logistic regression analysis showed that serum Lp-PLA2 level was an independent determinant of PP in both groups, with OR values more significant in diabetic patients than in non-diabetic patients. CONCLUSIONS: Levels of serum Lp-PLA2 show a significant association with the progression of coronary atherosclerotic plaque in patients with T2DM and those without, especially among individuals with diabetes.
Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa , Biomarcadores , Angiografía Coronaria , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Progresión de la Enfermedad , Placa Aterosclerótica , Humanos , Masculino , 1-Alquil-2-acetilglicerofosfocolina Esterasa/sangre , Femenino , Persona de Mediana Edad , Placa Aterosclerótica/sangre , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/complicaciones , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Biomarcadores/sangre , Anciano , Factores de Tiempo , Regulación hacia Arriba , Estudios de Casos y Controles , Factores de Riesgo , Estenosis Coronaria/sangre , Estenosis Coronaria/diagnóstico por imagen , PronósticoRESUMEN
OBJECTIVE: The aim of this study was to investigate the relationship between circulating levels of B cell activating factor (BAFF) and the presence and severity of coronary artery disease (CAD) and acute myocardial infarction (AMI) in humans, as its biological functions in this context remain unclear. METHODS: Serum BAFF levels were measured in a cohort of 723 patients undergoing angiography, including 204 patients without CAD (control group), 220 patients with stable CAD (CAD group), and 299 patients with AMI (AMI group). Logistic regression analyses were used to assess the association between BAFF and CAD or AMI. RESULTS: Significantly elevated levels of BAFF were observed in patients with CAD and AMI compared to the control group. Furthermore, BAFF levels exhibited a positive correlation with the SYNTAX score (r = 0.3002, P < 0.0001) and the GRACE score (r = 0.5684, P < 0.0001). Logistic regression analysis demonstrated that increased BAFF levels were an independent risk factor for CAD (adjusted OR 1.305, 95% CI 1.078-1.580) and AMI (adjusted OR 2.874, 95% CI 1.708-4.838) after adjusting for confounding variables. Additionally, elevated BAFF levels were significantly associated with a high GRACE score (GRACE score 155 to 319, adjusted OR 4.297, 95% CI 1.841-10.030). BAFF exhibited a sensitivity of 75.0% and specificity of 71.4% in differentiating CAD patients with a high SYNTAX score, and a sensitivity of 75.5% and specificity of 72.8% in identifying AMI patients with a high GRACE score. CONCLUSION: Circulating BAFF levels serve as a valuable diagnostic marker for CAD and AMI. Elevated BAFF levels are associated with the presence and severity of these conditions, suggesting its potential as a clinically relevant biomarker in cardiovascular disease.
Asunto(s)
Factor Activador de Células B , Biomarcadores , Angiografía Coronaria , Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Valor Predictivo de las Pruebas , Índice de Severidad de la Enfermedad , Regulación hacia Arriba , Humanos , Masculino , Factor Activador de Células B/sangre , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/diagnóstico , Femenino , Persona de Mediana Edad , Biomarcadores/sangre , Anciano , Infarto del Miocardio/sangre , Infarto del Miocardio/diagnóstico , Estudios de Casos y Controles , Factores de Riesgo , Medición de Riesgo , PronósticoRESUMEN
The mammalian prefrontal cortex comprises a set of highly specialized brain areas containing billions of cells and serves as the centre of the highest-order cognitive functions, such as memory, cognitive ability, decision-making and social behaviour. Although neural circuits are formed in the late stages of human embryonic development and even after birth, diverse classes of functional cells are generated and migrate to the appropriate locations earlier in development. Dysfunction of the prefrontal cortex contributes to cognitive deficits and the majority of neurodevelopmental disorders; there is therefore a need for detailed knowledge of the development of the prefrontal cortex. However, it is still difficult to identify cell types in the developing human prefrontal cortex and to distinguish their developmental features. Here we analyse more than 2,300 single cells in the developing human prefrontal cortex from gestational weeks 8 to 26 using RNA sequencing. We identify 35 subtypes of cells in six main classes and trace the developmental trajectories of these cells. Detailed analysis of neural progenitor cells highlights new marker genes and unique developmental features of intermediate progenitor cells. We also map the timeline of neurogenesis of excitatory neurons in the prefrontal cortex and detect the presence of interneuron progenitors in early developing prefrontal cortex. Moreover, we reveal the intrinsic development-dependent signals that regulate neuron generation and circuit formation using single-cell transcriptomic data analysis. Our screening and characterization approach provides a blueprint for understanding the development of the human prefrontal cortex in the early and mid-gestational stages in order to systematically dissect the cellular basis and molecular regulation of prefrontal cortex function in humans.
Asunto(s)
Diferenciación Celular/genética , Corteza Prefrontal/citología , Corteza Prefrontal/embriología , ARN/análisis , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Humanos , Interneuronas/citología , Interneuronas/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/clasificación , Neuronas/citología , Neuronas/metabolismo , ARN/genética , Transducción de SeñalRESUMEN
Quantum spins, also known as spin operators that preserve SU(2) symmetry, lack a specific orientation in space and are hypothesized to display unique interactions with superconductivity. However, spin-orbit coupling and crystal field typically cause a significant magnetic anisotropy in d/f shell spins on surfaces. Here, we fabricate atomically precise S = 1/2 magnetic nanographenes on Pb(111) through engineering sublattice imbalance in the graphene honeycomb lattice. Through tuning the magnetic exchange strength between the unpaired spin and Cooper pairs, a quantum phase transition from the singlet to the doublet state has been observed, consistent with the quantum spin models. From our calculations, the particle-hole asymmetry is induced by the Coulomb scattering potential and gives a transition point about kBTk ≈ 1.6Δ. Our work demonstrates that delocalized π electron magnetism hosts highly tunable magnetic bound states, which can be further developed to study the Majorana bound states and other rich quantum phases of low-dimensional quantum spins on superconductors.
RESUMEN
Revealing the energy and spatial characteristics of impurity-induced states in superconductors is essential for understanding their mechanism and fabricating a new quantum state by manipulating impurities. Here, by using high-resolution scanning tunneling microscopy and spectroscopy, we investigate the spatial distribution and magnetic field response of the impurity states in (Li_{1-x}Fe_{x})OHFeSe. We detect two pairs of strong in-gap states on the "dumbbell-shaped" defects. They display damped oscillations with different phase shifts and a direct phase-energy correlation. These features have long been predicted for the classical Yu-Shiba-Rusinov (YSR) state and are demonstrated here with unprecedented resolution for the first time. Moreover, upon applying magnetic field, all in-gap state peaks remarkably split into two rather than shift, and the splitting strength is field orientation dependent. Via detailed numerical model calculations, we find such an anisotropic splitting behavior can be naturally induced by a high-spin impurity coupled to an anisotropic environment, highlighting how magnetic anisotropy affects the behavior of YSR states.
RESUMEN
Modeling the processes of neuronal progenitor proliferation and differentiation to produce mature cortical neuron subtypes is essential for the study of human brain development and the search for potential cell therapies. We demonstrated a novel paradigm for the generation of vascularized organoids (vOrganoids) consisting of typical human cortical cell types and a vascular structure for over 200 days as a vascularized and functional brain organoid model. The observation of spontaneous excitatory postsynaptic currents (sEPSCs), spontaneous inhibitory postsynaptic currents (sIPSCs), and bidirectional electrical transmission indicated the presence of chemical and electrical synapses in vOrganoids. More importantly, single-cell RNA-sequencing analysis illustrated that vOrganoids exhibited robust neurogenesis and that cells of vOrganoids differentially expressed genes (DEGs) related to blood vessel morphogenesis. The transplantation of vOrganoids into the mouse S1 cortex resulted in the construction of functional human-mouse blood vessels in the grafts that promoted cell survival in the grafts. This vOrganoid culture method could not only serve as a model to study human cortical development and explore brain disease pathology but also provide potential prospects for new cell therapies for nervous system disorders and injury.
Asunto(s)
Técnicas de Cultivo de Célula , Neurogénesis , Organoides/irrigación sanguínea , Telencéfalo/embriología , Animales , Células Madre Embrionarias , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Pluripotentes Inducidas , Ratones Endogámicos NOD , Ratones SCID , Organoides/metabolismo , Organoides/trasplanteRESUMEN
Spatial transcriptomics can be used to capture cellular spatial organization and has facilitated new insights into different biological contexts, including developmental biology, cancer, and neuroscience. However, its wide application is still hindered by its technical challenges and immature data analysis methods. Allen Brain Atlas (ABA) provides a great source for spatial gene expression throughout the mouse brain at various developmental stages with in situ hybridization image data. To the best of our knowledge, the portal developed to access spatial expression data is not very useful to biologists. Here, we developed a toolkit to collect and preprocess expression data from the ABA and allow a friendlier query to visualize the spatial distribution of genes of interest, characterize the spatial heterogeneity of the brain, and register cells from single-cell transcriptomics data to fine anatomical brain regions via machine learning methods with high accuracy. AllenDigger will be very helpful to the community in precise spatial gene expression queries and add extra spatial information to further interpret the scRNA-seq data in a cost-effective manner.
Asunto(s)
Navegación Espacial , Animales , Ratones , Perfilación de la Expresión Génica/métodos , Encéfalo/metabolismo , Hibridación in Situ , Aprendizaje AutomáticoRESUMEN
BACKGROUND: The uncontrolled production of MPO promotes inflammation, oxidative stress and atherosclerosis. Serum MPO levels are increased in patients with diabetes compared with patients without diabetes. OBJECTIVES: This study aimed to investigate whether the serum levels and activities of MPO are related to coronary plaque progression in patients with type 2 diabetes mellitus (T2DM). MATERIAL AND METHODS: Serum MPO levels and activities were measured in 161 patients with diabetes with plaque progression (plaque progression group) and 87 patients with diabetes with no plaque progression (no plaque progression group). These patients were eligible based on the inclusion criteria and received quantitative coronary angiography at baseline and after approximately 1 year of follow-up. The characteristics and parameters of the participants at baseline were documented. RESULTS: Serum MPO levels and activities were significantly higher in plaque progression group than in no plaque progression group (P < 0.001). We categorized these patients with diabetes into MPO level or activity tertile subgroups. Significant differences in the plaque progression ratio and prominent changes in the minimal lumen diameter, stenosis diameter and coronary artery stenosis score were observed across the tertile subgroups of MPO levels and activities (all P < 0.01). Moreover, serum MPO levels and activities correlated significantly with these indices of coronary artery disease severity after adjustment for other risk factors. Multivariable regression analyses revealed that serum MPO levels and activities remained independently associated with plaque progression, in addition to smoking, hypertension and CRP levels (all P < 0.05). CONCLUSIONS: Serum MPO levels and activities are significantly associated with coronary atherosclerotic plaque progression in patients with type 2 diabetes.
Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Placa Aterosclerótica , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Angiografía Coronaria , Aterosclerosis/complicacionesRESUMEN
BACKGROUND: Endothelial dysfunction is common in diabetes. Apolipoprotein (apo) A-IV functions to antagonize inflammation and oxidative stress. The present study aimed to investigate the relationship between flow-mediated dilation (FMD) and serum apoA-IV level in type 2 diabetes mellitus (T2DM) patients. METHODS: A total of 84 T2DM patients with chest discomfort were enrolled in this study. Their baseline characteristics and clinical parameters were documented. Endothelial function of the participants was evaluated by examining FMD of brachial artery. The severity of coronary atherosclerosis was determined by quantitative coronary angiography. Serum apoA-IV levels were measured by ELISA. RESULTS: These diabetic patients were dichotomized into low FMD (n = 42) and high FMD (n = 42) groups. Serum apoA-IV levels were significantly higher in high FMD group than in low FMD group (29.96 ± 13.17 vs 17.69 ± 9.16 mg/dL, P < 0.001). Moreover, the patients were also categorized into three apoA-IV tertile groups. FMD was significantly different across three apoA-IV tertiles (P < 0.001). Serum apoA-IV levels were positively correlated to FMD (r = 0.469, P < 0.001). Logistic regression analysis was performed to determine risk factors for low FMD. apoA-IV levels together with the risk factor hsCRP remained significantly to be independent determinants of low FMD (P < 0.01). Linear regression analysis was performed, and apoA-IV levels together with total-to-HDL cholesterol ratio were independently correlated with FMD (P < 0.01). CONCLUSIONS: Serum apoA-IV levels are associated with FMD, suggesting that apoA-IV protects endothelial function in patients with T2DM.
Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , HDL-Colesterol , Proteína C-Reactiva , Dilatación , Apolipoproteínas A , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Endotelio VascularRESUMEN
BACKGROUND: The formation of advanced glycation end-products (AGEs) is a crucial risk factor for the pathogenesis of cardiovascular diseases in diabetes. We investigated whether N-epsilon-carboxymethyllysine (CML), a major form of AGEs in vivo, was associated with poor coronary collateral vessel (CCV) formation in patients with type 2 diabetes mellitus (T2DM) and chronic total occlusion (CTO) of coronary artery. METHODS: This study consisted of 242 T2DM patients with coronary angiographically documented CTO. Blood samples were obtained and demographic/clinical characteristics were documented. The coronary collateralization of these patients was defined according to Rentrop or Werner classification. Serum CML levels were evaluated using ELISA assay. Receiver operating characteristic curve and multivariable regression analysis were performed. RESULTS: 242 patients were categorized into poor CCV group or good CCV group (107 vs. 135 by the Rentrop classification or 193 vs. 49 by the Werner classification, respectively). Serum CML levels were significantly higher in poor CCV group than in good CCV group (110.0 ± 83.35 vs. 62.95 ± 58.83 ng/ml by the Rentrop classification and 94.75 ± 78.29 ng/ml vs. 40.37 ± 28.69 ng/ml by Werner classification, both P < 0.001). Moreover, these CML levels were also significantly different across the Rentrop and Werner classification subgroups (P < 0.001). In multivariable logistic regression, CML levels (P < 0.001) remained independent determinants of poor CCV according to the Rentrop or Werner classification after adjustment of traditional risk factors. CONCLUSIONS: This study suggests that higher serum CML level is associated with poor collateralization in T2DM patients with CTO.
Asunto(s)
Oclusión Coronaria , Diabetes Mellitus Tipo 2 , Circulación Colateral , Angiografía Coronaria/efectos adversos , Circulación Coronaria , Oclusión Coronaria/etiología , Vasos Coronarios/diagnóstico por imagen , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Humanos , Lisina/análogos & derivadosRESUMEN
Ferroelectric (FE) distortions in a metallic material were believed to be experimentally inaccessible because itinerant electrons would screen the long-range Coulomb interactions that favor a polar structure. It has been suggested by Anderson and Blount [P. W. Anderson, E. I. Blount, Phys. Rev. Lett. 14, 217-219 (1965)] that a transition from paraelectric phase to FE phase is possible for a metal if, in the paraelectric phase, the electrons at the Fermi level are decoupled from the soft transverse optical phonons, which lead to ferroelectricity. Here, using Raman spectroscopy combined with magnetotransport measurements on a recently discovered FE metal LiOsO3, we demonstrate active interplay of itinerant electrons and the FE order: Itinerant electrons cause strong renormalization of the FE order parameter, leading to a more gradual transition in LiOsO3 than typical insulating FEs. In return, the FE order enhances the anisotropy of charge transport between parallel and perpendicular to the polarization direction. The temperature-dependent evolution of Raman active in-plane 3Eg phonon, which strongly couples to the polar-active out-of-the-plane A2u phonon mode in the high-temperature paraelectric state, exhibits a deviation in Raman shift from the expectation of the pseudospin-phonon model that is widely used to model many insulating FEs. The Curie-Weiss temperature (θ ≈ 97 K) obtained from the optical susceptibility is substantially lower than T s, suggesting a strong suppression of FE fluctuations. Both line width and Fano line shape of 3Eg Raman mode exhibit a strong electron-phonon coupling in the high-temperature paraelectric phase, which disappears in the FE phase, challenging Anderson/Blount's proposal for the formation of FE metals.
RESUMEN
In this paper we transform the trajectories of X-ray as it interacts with a phantom into a high-dimensional integration problem and give the integral formula for the probability of photons emitted from the X-ray source through the phantom to reach the detector. We propose a superior algorithm called gQMCFRD, which combines GPU-based quasi-Monte Carlo (gQMC) method with forced random detection (FRD) technique to simulate this integral. QMC simulation is deterministic versions of Monte Carlo (MC) simulation, which uses deterministic low discrepancy points (such as Sobol' points) instead of the random points. By using the QMC and FRD technique, the gQMCFRD greatly increases the simulation convergence rate and efficiency. We benchmark gQMCFRD, GPU based MC tool (gMCDRR), which performs conventional simulations, a GPU-based Metropolis MC tool (gMMC), which uses the Metropolis-Hasting algorithm to sample the entire photon path from the X-ray source to the detector and gMCFRD, that uses random points for sampling against PENELOPE subroutines: MC-GPU. The results are in excellent agreement and the Efficiency Improvement Factor range 27 â¼ 37 (or 1.09 â¼ 1.16, or 0.12 â¼ 0.15, or 3.62 â¼ 3.70) by gQMCFRD (or gMCDRR, or gMMC, or gMCFRD) with comparison to MC-GPU in all cases. It shows that gQMCFRD is more effective in these cases.