Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38607990

RESUMEN

Excessive inflammatory response and oxidative stress (OS) play an important role in the pathogenesis of spinal cord injury (SCI). Balance of inflammation and prevention of OS have been considered an effective strategy for the treatment of SCI. Hyaluronan and proteoglycan link protein 1 (HAPLN1), also known as cartilage link protein, has displayed a wide range of biological and physiological functions in different types of tissues and cells. However, whether HAPLN1 regulates inflammation and OS during SCI is unknown. Therefore, we aimed to examine whether HAPLN1 can have a protective effect on SCI. In this study, both in vitro and in vivo SCI models were established. Nissl staining and terminal deoxynucleotidyl transferase dUTP nick end labeling staining assays were used. Western blotting and enzyme-linked immunosorbent assay were employed to assess the expression of proteins. Our results demonstrate that the administration of HAPLN1 promoted the recovery of motor neurons after SCI by increasing the Basso mouse scale score, increasing the numbers of motor neurons, and preventing apoptosis of spinal cord cells. Additionally, HAPLN1 mitigated OS in spinal cord tissue after SCI by increasing the content of superoxide dismutase SOD and the activity of glutathione peroxidase but reducing the levels of malondialdehyde. Importantly, we found that HAPLN1 stimulated the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and stimulated the expression of heme oxygenase-1 and nicotinamide adenine dinucleotide phosphate quinone oxidoreductase-1, which mediated the attenuation of HAPLN1 in activation of the NOD-like receptor protein 3 (NLRP3) inflammasome by reducing the levels of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, and interleukin-1ß. Correspondingly, in vitro experiments show that the presence of HAPLN1 suppressed the NLRP3 inflammasome and prevented cell injury against H2O2 in PC12 cells. These effects were mediated by the Nrf2/ARE pathway, and inhibition of Nrf2 with ML385 abolished the beneficial effects of HAPLN1. Based on these findings, we conclude that HAPLN1 inhibits the NLRP3 inflammasome through the stimulation of the Nrf2/ARE pathway, thereby suppressing neuroinflammation, enhancing motor neuronal survival, and improving the recovery of nerve function after SCI.

2.
Ecotoxicol Environ Saf ; 280: 116574, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38875822

RESUMEN

Aflatoxin B1 (AFB1) is commonly found in feed ingredients and foods all over the world, posing a significant threat to food safety and public health in animals and humans. Lactobacillus salivarius (L. salivarius) was recorded to improve the intestinal health and performance of chickens. However, whether L. salivarius can alleviate AFB1-induced hepatotoxicity in geese was unknown. A total of 300 Lande geese were randomly assigned to five groups: control group, AFB1 low-dose group (L), L. salivarius+AFB1 low-dose group (LL), AFB1 high dosage groups (H), L. salivarius+AFB1 high dosage groups (LH), respectively. The results showed that the concentrations of ALT, AST, and GGT significantly increased after exposure to AFB1. Similarly, severe damage of hepatic morphology was observed including the hepatic structure injury and inflammatory cell infiltration. The oxidative stress was evidenced by the elevated concentrations of MDA, and decreased activities of GSH-Px, GSH and SOD. The observation of immunofluorescence, real-time PCR, and western blotting showed that the expression of PINK1 and the value of LC3II/LC3I were increased, but that of p62 significantly decreased after AFB1 exposure. Moreover, the supplementation of L. salivarius effectively improved the geese performance, ameliorated AFB1-induced oxidative stress, inhibited mitochondrial mitophagy and enhanced the liver restoration to normal level. The present study demonstrated that L. salivarius ameliorated AFB1-induced the hepatotoxicity by decreasing the oxidative stress, and regulating the expression of PINK1/Parkin-mediated mitophagy in the mitochondria of the geese liver. Furthermore, this investigation suggested that L. salivarius might serve as a novel and safe additive for preventing AFB1 contamination in poultry feed.


Asunto(s)
Aflatoxina B1 , Gansos , Ligilactobacillus salivarius , Hígado , Mitofagia , Proteínas Quinasas , Ubiquitina-Proteína Ligasas , Animales , Aflatoxina B1/toxicidad , Mitofagia/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Ligilactobacillus salivarius/fisiología , Hígado/efectos de los fármacos , Hígado/patología , Proteínas Quinasas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Estrés Oxidativo/efectos de los fármacos , Probióticos/farmacología
3.
Ecotoxicol Environ Saf ; 280: 116527, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38833978

RESUMEN

Aflatoxin B1 (AFB1) is known to inhibit growth, and inflict hepatic damage by interfering with protein synthesis. Allicin, has been acknowledged as an efficacious antioxidant capable of shielding the liver from oxidative harm. This study aimed to examine the damage caused by AFB1 on bovine hepatic cells and the protective role of allicin against AFB1-induced cytotoxicity. In this study, cells were pretreated with allicin before the addition of AFB1 for co-cultivation. Our findings indicate that AFB1 compromises cellular integrity, suppresses the expression of nuclear factor erythroid 2-related factor 2 (Nrf2). In addition, allicin attenuates oxidative damage to bovine hepatic cells caused by AFB1 by promoting the expression of the Nrf2 pathway and reducing cell apoptosis. In conclusion, the results of this study will help advance clinical research and applications, providing new options and directions for the prevention and treatment of liver diseases.


Asunto(s)
Aflatoxina B1 , Antioxidantes , Apoptosis , Disulfuros , Hepatocitos , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Transducción de Señal , Ácidos Sulfínicos , Animales , Ácidos Sulfínicos/farmacología , Aflatoxina B1/toxicidad , Bovinos , Disulfuros/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Antioxidantes/farmacología , Femenino
4.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38396863

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is characterized by hepatic fat accumulation by metabolic dysfunction. The rising prevalence of MAFLD, especially among Asians, may be associated with changes in gut microbiota. We investigated gut microbiota characteristics and potential mechanisms leading to MAFLD development according to enterotypes. Case-control studies examining the gut microbiota composition between MAFLD and non-MAFLD participants were searched in public databases until July 2023. Gut microbiota was categorized into two enterotypes by principal component analysis. According to the enterotypes, LEfSe, ALDEx2, XGBoost, and DCiPatho were utilized to identify differential abundances and pathogenic microbes in the gut between the MAFLD and non-MAFLD groups. We analyzed microbial community networks with the SprCC module and predicted microbial functions. In the Prevotella enterotype (ET-P), 98.6% of Asians and 65.1% of Caucasians were associated with MAFLD (p = 0.049). MAFLD incidence was correlated with enterotype, age, obesity, and ethnicity (p < 0.05). Asian MAFLD patients exhibited decreased Firmicutes and Akkermansia muciniphila and increased Bacteroidetes and P. copri. The pathogenicity scores were 0.006 for A. muciniphila and 0.868 for P. copri. The Asian MAFLD group showed decreased stability and complexity in the gut microbiota network. Metagenome function analysis revealed higher fructose metabolism and lipopolysaccharide (LPS) biosynthesis and lower animal proteins and α-linolenic acid metabolism in Asians with MAFLD compared with the non-MAFLD group. LPS biosynthesis was positively correlated with P. copri (p < 0.05). In conclusion, P. copri emerged as a potential microbial biomarker for MAFLD. These findings enhance our understanding of the pathological mechanisms of MAFLD mediated through the gut microbiota, providing insights for future interventions.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Lipopolisacáridos , Disbiosis , Prevotella/genética
5.
Eur J Nutr ; 62(7): 2841-2854, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37358571

RESUMEN

PURPOSE: Soybean glycinin (11S) and ß-conglycinin (7S) are major antigenic proteins in soybean and can induce a variety of allergic reactions in the young animals. This study aimed to investigate the effect of 7S and 11S allergens on the intestine of piglets. METHODS: Thirty healthy 21-day-old weaned "Duroc × Long White × Yorkshire" piglets were randomly divided into three groups fed with the basic diet, the 7S supplemented basic diet, or the 11S supplemented basic diet for 1 week. Allergy markers, intestinal permeability, oxidative stress, and inflammatory reactions were detected, and we observed different sections of intestinal tissue. The expressions of genes and proteins related to NOD-like receptor thermal protein domain associated protein 3 (NLRP-3) signaling pathway were detected by IHC, RT-qPCR, and WB. RESULTS: Severe diarrhea and decreased growth rate were observed in the 7S and 11S groups. Typical allergy markers include IgE production and significant elevations of histamine and 5-hydroxytryptamine (5-HT). More aggressive intestinal inflammation and barrier dysfunction were observed in the experimental weaned piglets. In addition, 7S and 11S supplementation increased the levels of 8-hydroxy-2 deoxyguanosine (8-OHdG) and nitrotyrosine, triggering oxidative stress. Furthermore, higher expression levels of NLRP-3 inflammasome ASC, caspase-1, IL-1ß, and IL-18 were observed in the duodenum, jejunum, and ileum. CONCLUSION: We confirmed that 7S and 11S damaged the intestinal barrier of weaned piglets and may be associated with the onset of oxidative stress and inflammatory response. However, the molecular mechanism underlying these reactions deserves further study.


Asunto(s)
Globulinas , Hipersensibilidad , Animales , Porcinos , Glycine max/metabolismo , Proteínas de Soja/efectos adversos , Proteínas de Soja/metabolismo , Intestinos , Globulinas/metabolismo , Estrés Oxidativo
6.
Ecotoxicol Environ Saf ; 254: 114710, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36950988

RESUMEN

Zearalenone (ZEA) is an estrogen-like mycotoxin, which mainly led to reproductive toxicity. The study aimed to investigate the molecular mechanism of ZEA-induced dysfunction of mitochondria-associated endoplasmic reticulum membranes (MAM) in piglet Sertoli cells (SCs) via the endoplasmic reticulum stress (ERS) pathway. In this study, SCs were used as a research object that was exposed to ZEA, and ERS inhibitor 4-Phenylbutyrate acid (4-PBA) was used as a reference. The results showed that ZEA damaged cell viability and increased Ca2+ levels; damaged the structure of MAM; up-regulated the relative mRNA and protein expression of glucose-regulated protein 75 (Grp75) and mitochondrial Rho-GTPase 1 (Miro1), while inositol 1,4,5-trisphosphate receptor (IP3R), voltage-dependent anion channel 1 (VDAC1), mitofusin2 (Mfn2) and phosphofurin acidic cluster protein 2 (PACS2) were down-regulated. After a 3 h 4-PBA-pretreatment, ZEA was added for mixed culture. The results of 4-PBA pretreatment showed that inhibition of ERS reduced the cytotoxicity of ZEA against piglet SCs. Compared with the ZEA group, inhibition of ERS increased cell viability and decreased Ca2+ levels; restored the structural damage of MAM; down-regulated the relative mRNA and protein expression of Grp75 and Miro1; and up-regulated the relative mRNA and protein expression of IP3R, VDAC1, Mfn2, and PACS2. In conclusion, ZEA can induce MAM dysfunction in piglet SCs via the ERS pathway, whereas ER can regulate mitochondria through MAM.


Asunto(s)
Zearalenona , Masculino , Animales , Porcinos , Zearalenona/toxicidad , Células de Sertoli/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés del Retículo Endoplásmico
7.
Molecules ; 28(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37764275

RESUMEN

Endoplasmic reticulum (ER) stress is a crucial factor in the pathogenesis of intestinal diseases. Soybean antigenic proteins (ß-conglycinin and soy glycinin) induce hypersensitivity reactions and intestinal barrier damage. However, whether this damage is associated with ER stress, autophagy, and the gut microbiome is largely unclear. Therefore, in this study, we aimed to investigate the effect of dietary supplementation with soy glycinin (11S glycinin) and ß-conglycinin (7S glycinin) on intestinal ER stress, autophagy, and flora in weaned piglets. Thirty healthy 21-day-old weaned "Duroc × Long White × Yorkshire" piglets were randomly divided into three groups and fed a basic, 7S-supplemented, or 11S-supplemented diet for one week. The results indicated that 7S/11S glycinin disrupted growth performance, damaged intestinal barrier integrity, and impaired goblet cell function in piglets (p < 0.05). Moreover, 7S/11S glycinin induced ER stress and blocked autophagic flux in the jejunum (p < 0.05) and increased the relative abundance of pathogenic flora (p < 0.01) and decreased that of beneficial flora (p < 0.05). In conclusion, 7S/11S glycinin induces intestinal ER stress, autophagic flux blockage, microbiota imbalance, and intestinal barrier damage in piglets.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Porcinos , Glycine max , Intestinos , Estrés del Retículo Endoplásmico
8.
J Cardiovasc Pharmacol ; 79(4): 501-511, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34954748

RESUMEN

ABSTRACT: RNAs (circRNAs) play critical roles in many diseases, including atherosclerosis (AS). However, the role and underlying mechanism of circ_0002984 in AS remain unclear. Vascular smooth muscle cells (VSMCs) treated with oxidized low-density lipoprotein (ox-LDL) were used as a AS cell model. Quantitative real-time polymerase chain reaction was conducted to detect the expression of circ_0002984, miR-181b-5p and vascular endothelial growth factor A (VEGFA). Cell proliferation was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide assay and 5-ethynyl-2'-deoxyuridine assays. Cell migration was assessed using wound healing assay and transwell assay. All protein levels were analyzed by western blot assay. The interaction between miR-181b-5p and circ_0002984 or VEGFA was confirmed by dual-luciferase reporter, RNA Immunoprecipitation, and RNA pull-down assays. Circ_0002984 and VEGFA were overexpressed, and miR-181b-5p was downregulated in serum of AS patients and ox-LDL-stimulated VSMCs. Circ_0002984 silencing inhibited ox-LDL-induced proliferation and migration in VSMCs. MiR-181b-5p was a target of circ_0002984, and miR-181b-5p inhibition counteracted the suppressing effects of circ_0002984 downregulation on proliferation and migration in ox-LDL-stimulated VSMCs. Additionally, VEGFA was a downstream target of miR-181b-5p and VEGFA upregulation abolished the suppressive influence of miR-181b-5p on proliferation and migration in ox-LDL-exposed VSMCs. Furthermore, circ_0002984 depletion blocked phosphatidylinositol 3 kinase-AKT signaling pathway by regulating miR-181b-5p and VEGFA. Circ_0002984 downregulation suppressed cell proliferation and migration by regulating miR-181b-5p/VEGFA axis and phosphatidylinositol 3 kinase-AKT pathway in ox-LDL-stimulated VEGFA, providing a new mechanism for AS pathogenesis.


Asunto(s)
Aterosclerosis , MicroARNs , Aterosclerosis/patología , Movimiento Celular , Proliferación Celular , Células Cultivadas , Humanos , Lipoproteínas LDL/metabolismo , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/farmacología
9.
J Cell Physiol ; 236(1): 405-416, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32572960

RESUMEN

Epigallocatechin-3-gallate (EGCG) plays a crucial role in hepatic lipid metabolism. However, the underlying regulatory mechanism of hepatic lipid metabolism by EGCG in canine is unclear. Primary canine hepatocytes were treated with EGCG (0.01, 0.1, or 1 µM) and BML-275 (an AMP-activated protein kinase [AMPK] inhibitor) to study the effects of EGCG on the gene and protein expressions associated with AMPK signaling pathway. Data showed that treatment with EGCG had greater activation of AMPK, as well as greater expression levels and transcriptional activity of peroxisome proliferator activated receptor-α (PPARα) along with upregulated messenger RNA (mRNA) abundance and protein abundance of PPARα-target genes. EGCG decreased the expression levels and transcriptional activity of sterol regulatory element-binding protein 1c (SREBP-1c) along with downregulated mRNA abundance and protein abundance of SREBP-1c target genes. Of particular interest, exogenous BML-275 could reduce or eliminate the effects of EGCG on lipid metabolism in canine hepatocytes. Furthermore, the content of triglyceride was significantly decreased in the EGCG-treated groups. These results suggest that EGCG might be a potential agent in preventing high-fat diet-induced lipid accumulation in small animals.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Catequina/análogos & derivados , Hepatocitos/metabolismo , Metabolismo de los Lípidos/genética , Transducción de Señal/genética , Animales , Catequina/genética , Células Cultivadas , Dieta Alta en Grasa , Perros , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Hepatocitos/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , PPAR alfa/genética , Pirazoles/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética , Triglicéridos/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
10.
Ecotoxicol Environ Saf ; 225: 112737, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34482067

RESUMEN

Zearalenone (ZEA) has an estrogenic effect and often causes reproductive damage. Pigs are particularly sensitive to it. Lycopene (LYC) is a type of fat-soluble natural carotenoid that has antioxidant, anti-inflammatory, anti-cancer, anti-cardiovascular and detoxifying effects. In this study, piglet sertoli cells (SCs) were used as research objects to investigate the mechanism of ZEA induced damage to piglet SCs and to evaluate the protective effect of LYC on ZEA induced toxic damage to piglet SCs. The results showed that ZEA damaged the cell structure and inhibited the expression of nuclear factor erythroid-2 related factor 2 (Nrf2) in the nucleus, which down-regulated the relative mRNA expression of heme oxygenase 1 (HO-1) and glutathione peroxidase 1 (GPX1) and decreased the activity of HO-1, glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD), resulting in an increase in malondialdehyde (MDA) and reactive oxygen species (ROS) content. ZEA downregulated the relative mRNA and protein expression of bcl-2 in piglet SCs, promoted cell apoptosis, and upregulated the relative mRNA and protein expression of LC3, beclin-1, and bax. After 3 h LYC-pretreatment, ZEA was added for mixed culture. The results of pretreatment with LYC showed that LYC could alleviate the cytotoxicity of ZEA to porlets SCs. Compared with ZEA group, improved the cell survival rate, promoted the expression of Nrf2 in the nucleus, upregulated the relative mRNA expression of HO-1 and GPX1, increased the activity of antioxidant enzymes, and reduced the levels of MDA and ROS. Moreover, after pretreatment with LYC, the mRNA expression of bcl-2 was upregulated, the apoptosis rate was decreased, the relative mRNA and protein expressions of LC3, beclin-1 and bax were downregulated, and autophagy was alleviated. In conclusion, LYC alleviated the oxidative damage of SCs caused by ZEA by promoting the expression of Nrf2 pathway and decreased autophagy and apoptosis.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Zearalenona , Animales , Licopeno , Masculino , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Células de Sertoli/metabolismo , Transducción de Señal , Porcinos , Zearalenona/toxicidad
11.
J Cell Physiol ; 235(11): 7803-7815, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31930515

RESUMEN

Deoxynivalenol (DON) is a major mycotoxin from the trichothecene family of mycotoxins produced by Fusarium fungi. It can cause a variety of adverse effects on human and farm animal health. Here, we determined the effect of DON on the Class III phosphatidylinositol 3-kinase (PIK3C3)/beclin 1/B cell lymphoma-2 (Bcl-2) pathway in PC12 cells and the relationship between autophagy and apoptosis. The effects of DON were evaluated based on the apoptosis ratio; the typical indicators of autophagy, including cellular morphology, acridine orange- and monodansylcadaverine-labeled vacuoles, green fluorescent protein-microtubule associated protein 1 light chain 3 (LC3) localization, and LC3 immunofluorescence; and the expression of key autophagy-related genes and proteins, that is, PIK3C3, beclin 1, Bcl-2, LC3, and p62. The relationship between autophagy and apoptosis was analyzed by western blot analysis and flow cytometry. DON-induced PC12 cell morphological changes and autophagy significantly. PIK3C3, beclin 1, and LC3 increased in tandem with the DON concentration used; Bcl-2 and p62 expression decreased as DON concentrations increased. Moreover, the PIK3C3/beclin 1/Bcl-2 signaling pathway played a role in DON-induced autophagy. Our findings suggest that DON can induce autophagy by activating the PIK3C3/beclin 1/Bcl-2 signaling pathway and that autophagy may play a positive role in reducing DON-induced apoptosis.


Asunto(s)
Autofagia/efectos de los fármacos , Beclina-1/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Tricotecenos/toxicidad , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Autofagia/fisiología , Células PC12 , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
12.
BMC Vet Res ; 16(1): 234, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641048

RESUMEN

BACKGROUND: Tea polyphenols (TPs) attenuate obesity related liver inflammation; however, the anti-obesity effects and anti-inflammatory mechanisms are not clearly understood. This study aimed to determine whether the anti-obesity and anti-inflammatory TPs mechanisms associated with cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression levels, and obesity-related gene response in dogs. RESULTS: Dogs fed TPs displayed significantly decreased (p < 0.01) mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1ß), and interleukin-6 (IL-6) compared to dogs that consumed high-fat diet (HFD) alone. TPs significantly (p < 0.01) inhibited COX-2 and iNOS expression level, and decreased liver fat content and degeneration. CONCLUSION: These results suggested that TPs act as a therapeutic agent for obesity, liver inflammation, and fat degeneration via COX-2 and iNOS inhibition, with TNF-α, IL-1ß, and IL-6 involvement.


Asunto(s)
Camellia sinensis/química , Ciclooxigenasa 2/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/genética , Obesidad/veterinaria , Polifenoles/farmacología , Animales , Antiinflamatorios , Enfermedades de los Perros/tratamiento farmacológico , Perros , Inflamación/veterinaria , Obesidad/tratamiento farmacológico
13.
Ecotoxicol Environ Saf ; 194: 110382, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32146195

RESUMEN

Deoxynivalenol(DON) has broad toxicity in livestock, but we know little about its neurotoxic mechanisms. We investigated DON neurotoxicity in the cerebral cortex, cerebellum, and hippocampus of "Duroc × Landrace × Yokshire" piglets. Control piglets were fed a basal diet, while those in low- and high-treatment groups were fed diets with 1.3 mg/kg and 2.2 mg/kg DON, respectively. After a 60 d trial, scanning electron microscopy revealed the destruction of hippocampal cell ultrastructure. As DON concentrations increased, oxidative damage also increased in the cerebral cortex, cerebellum, and hippocampus. Norepinephrine and 5-hydroxytryptamine concentrations tended to increase, whereas dopamine and γ-aminobutyric acid concentrations decreased. We also observed an increase in calcium concentration, relative mRNA expression of calcium/calmodulin-dependent protein kinase II (CaMKII), and CaMKII phosphorylation. However, calmodulin (CaM) mRNA and protein content decreased. Overall, our results suggest that DON acts through the Ca2+/CaM/CaMKII signaling pathway to influence cerebral lipid peroxidation and neurotransmitter levels.


Asunto(s)
Encéfalo/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Neurotransmisores/metabolismo , Tricotecenos/toxicidad , Animales , Encéfalo/metabolismo , Calcio/metabolismo , Dieta , Masculino , Síndromes de Neurotoxicidad/metabolismo , Oxidación-Reducción , Porcinos , Destete
14.
J Cell Physiol ; 234(5): 6054-6066, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30478902

RESUMEN

The ketotic cows displayed hepatic lipid metabolic disorder and high blood concentration of glucagon. Importantly, adenosine monophosphate-activated protein kinase (AMPK) signaling pathway plays an important role in the hepatic lipid homeostasis. Therefore, the aim of this study was to investigate the effect of glucagon on AMPK pathway and its underlying mechanism on lipid metabolism in cow hepatocytes. Cow hepatocytes were cultured and treated with glucagon and AMPK inhibitor (BML-275). The results showed that glucagon significantly promoted the expression of glucagon receptor and increased the phosphorylation level and activity of AMPKα. Activated AMPKα increased the expression level and transcriptional activity of peroxisome proliferator-activated receptor α, which further increased the expression of fatty acid oxidation genes and lipid oxidation. Furthermore, activated AMPKα inhibited the expression level and transcriptional activity of sterol regulatory element binding protein-1c and carbohydrate response element binding protein, which decreased the expression of lipogenic genes, thereby decreasing lipid synthesis. In addition, glucagon also increased the expression of very-low-density lipoprotein (VLDL) assembly to export intracellular triglycerides (TG). Consequently, the content of intracellular TG was significantly decreased in cow hepatocytes. These results indicate that glucagon activates the AMPK signaling pathway to increase lipid oxidation and VLDL assembly and decrease lipid synthesis in cow hepatocytes, thereby reducing liver fat accumulation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Glucagón/metabolismo , Hepatocitos/metabolismo , Metabolismo de los Lípidos/fisiología , Transducción de Señal/fisiología , Animales , Bovinos , Femenino , Cetosis/veterinaria
15.
J Mol Evol ; 87(4-6): 184-198, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31302723

RESUMEN

Recent developments in sequencing and growth of bioinformatics resources provide us with vast depositories of protein network and single nucleotide polymorphism data. It allows us to re-examine, on a larger and more comprehensive scale, the relationship between protein-protein interactions and protein variability and evolutionary rates. This relationship has remained far from unambiguously resolved for quite a long time, reflecting shifting analysis approaches in the literature, and growing data availability. In this study, we utilized several public genomic databases to investigate this relationship in human, mouse, pig, chicken, and zebrafish. We observed strong non-linear relationship patterns (tending towards convex decreasing function shapes) between protein variability and the density of corresponding protein-protein interactions across all five species. To investigate further, we carried out stochastic simulations, modeling the interplay between protein connectivity and variability. Our results indicate that a simple negative linear correlation model, often suggested (or tacitly assumed) in the literature, as either a null or an alternative hypothesis, is not a good fit with the observed data. After considering different (but still relatively simple, and not overfitting) simulation models, we found that a convex decreasing protein variability-connectivity function (specifically, exponential decay) led to a much better fit with the real data. We conclude that simple correlation models might be inadequate for describing protein variability-connectivity interplay in vertebrates; they often tend towards false negatives (showing no more than marginal linear or rank correlation where there are in fact strong non-random patterns).


Asunto(s)
Evolución Molecular , Modelos Estadísticos , Procesos Estocásticos , Vertebrados/genética , Animales , Biología Computacional/métodos , Simulación por Computador , Bases de Datos de Proteínas , Humanos , Dominios y Motivos de Interacción de Proteínas/fisiología
16.
BMC Vet Res ; 15(1): 180, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31146764

RESUMEN

BACKGROUND: Breast cancer resistance protein (BCRP) and multidrug resistance protein 4 (MRP4) are involved in uric acid excretion in humans and mice. Despite evidence suggesting that renal proximal tubular epithelial cells participate in uric acid excretion in chickens, the roles of BCRP and MRP4 therein remain unclear. This study evaluated the relationship between BCRP and MRP4 expression and renal function in chickens. RESULTS: Sixty laying hens were randomly divided into four treatment groups: a control group (NC) fed a basal diet; a sulfonamide-treated group (SD) fed the basal diet and supplemented with sulfamonomethoxine sodium via drinking water (8 mg/L); a fish meal group (FM) fed the basal diet supplemented with 16% fishmeal; and a uric acid injection group (IU) fed the basal diet and intraperitoneally injected with uric acid (250 mg/kg body weight). The results showed that serum uric acid, creatinine, and blood urea nitrogen levels were significantly higher in the SD and IU, but not FM, than in the NC groups. Renal tubular epithelial cells in the SD and IU groups were damaged. Liver BCRP and MRP4 mRNA and protein levels were significantly decreased in the SD and IU groups, but slightly increased in the FM group. In the SD group, BCRP and MRP4 were significantly increased in the ileum and slightly increased in the kidney. In the FM group, BCRP and MRP4 were significantly increased in the kidney and slightly increased in the ileum. In the IU group, BCRP and MRP4 were significantly increased in the kidney and ileum. BCRP and MRP4 expression in the jejunum was not affected by the treatments. CONCLUSION: Together, these results demonstrate that BCRP and MRP4 are involved in renal and intestinal uric acid excretion in chickens and that BCRP is positively related to MRP4 expression. Further, impairment of renal function results in an increase in serum uric acid as well as a compensatory increase in BCRP and MRP4 in the ileum; however, under normal renal function, renal BCRP and MRP4 are the main regulators of uric acid excretion.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Pollos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Ácido Úrico/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Animales , Nitrógeno de la Urea Sanguínea , Pollos/sangre , Células Epiteliales/ultraestructura , Femenino , Mucosa Intestinal/metabolismo , Riñón/metabolismo , Riñón/ultraestructura , Túbulos Renales/ultraestructura , Hígado/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , ARN Mensajero/metabolismo , Ácido Úrico/sangre
17.
Inflammopharmacology ; 27(1): 77-88, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30099676

RESUMEN

Rutin, found widely in traditional Chinese medicine materials, is used to treat eye swelling and pain, hypertension, and hyperlipidemia. In the present study, a mouse mastitis model induced by lipopolysaccharide (LPS) was established to explore rutin's inhibitory mechanism on mastitis via nuclear factor kappa B (NF-κB) inflammatory signaling and the relationship between NF-κB signaling and endoplasmic reticulum (ER) stress. Mice were divided into six groups: Control group, LPS model group, LPS + rutin (25, 50, and 100 mg/kg) and LPS + dexamethasone (DEX) group. DEX, rutin, and PBS (control and LPS groups) were administered 1 h before and 12 h after perfusion of LPS. After LPS stimulation for 24 h, to evaluate rutin's therapeutic effect on mastitis, the mammary tissues of each group were collected to detect histopathological injury, tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß, and IL-6 mRNA and protein levels; and glucose-regulated protein, 78 kDa (GRP78) protein levels. The protein and mRNA levels of TNF-α, IL-1ß, and IL-6 in the LPS + rutin group were significantly lower than those in the LPS model group. Similarly, p50/p105, phosphorylated (p)-p65/p65 and p-inhibitor of nuclear factor kappa b kinase subunit beta (p-IKKß)/IKKß ratios in the LPS + rutin group (50 mg/kg) and LPS + rutin group (100 mg/kg) decreased significantly. GRP78 protein expression was significantly higher in LPS + rutin group (100 mg/kg). The structure of mammary tissue became gradually more intact and vacuolization of acini decreased as the rutin concentration increased. The nuclear quantity of p65 in the LPS + rutin group decreased significantly in a rutin dose-dependent manner. Rutin had an anti-inflammatory effect in the LPS-induced mouse mastitis model, manifested by inhibition of NF-κB pathway activation and attenuation of ER stress.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Lipopolisacáridos/farmacología , Mastitis/inducido químicamente , Mastitis/tratamiento farmacológico , FN-kappa B/metabolismo , Sustancias Protectoras/farmacología , Rutina/farmacología , Animales , Antiinflamatorios/farmacología , Chaperón BiP del Retículo Endoplásmico , Femenino , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/metabolismo , Mastitis/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
18.
Inflammopharmacology ; 26(2): 319-330, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29532213

RESUMEN

Inflammatory bowel disease (IBD) is a collection of inflammatory conditions of colon and small intestine which affect millions of individuals worldwide and the prevalence amount is on the rise. The organ failure as well as loss of tissue function is because of the inflammatory reaction which is the major contributor of tissue healing leading to lifelong debilitation. To stop the tough consequences of inflammation every patient pursues alternative therapy to relieve symptoms. Green tea polyphenols (GTPs) play significant roles in down regulating signaling pathways because GTPs exert effective antioxidant properties and regulate Toll-like receptor 4 (TLR4) expression via certain receptor, inhibited endotoxin-mediated tumor necrosis factor alpha (TNF-α) production by blocking transcription nuclear factor-kappa B (NF-kB) activation and upstream of mediated I kappa B kinase complex pathway activities, as well as intrusion with the flow of cytokines and synthesis of cyclooxygenase-2 (COX-2). This article highlights the green approach regarding the defensive effects of GTP review-related studies concerning the contrary effects and the key therapeutic targets application of GTPs in biomedical field to treat inflammatory bowel disease (IBD) and its complications. .


Asunto(s)
Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Polifenoles/farmacología , Té/química , Animales , Antioxidantes/farmacología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo
19.
Cell Physiol Biochem ; 43(2): 636-643, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28942448

RESUMEN

BACKGROUND: MiR-134 is enriched in dendrites of hippocampal neurons and plays crucial roles in the progress of epilepsy. The present study aims to investigate the effects of antagomirs targeting miroRNA-134 (Ant-134) on limk1 expression and the binding of miR-134 and limk1 in experimental seizure. METHODS: Status epilepticus (SE) rat model was established by lithium chloride-pilocarpine injection and was treated with Ant-134 by intracerebroventricular injection. Low Mg2+-exposed primary neurons were used as an in vitro model of SE. The expression of miR-134 was determined using real-time PCR. Protein expressions of limk1 and cofilin were determined by Western blotting. Luciferase reporter assay was used to examine the binding between miR-134 and limk1 3'-untranslated region. RESULTS: The expression of miR-134 was markedly enhanced in hippocampus of the SE rats and low Mg2+-exposed neurons. Ant-134 increased the expression of limk1 and reduced the expression of cofilin in the SE hippocampus and Low Mg2+-exposed neurons. In addition, luciferase reporter assay confirmed that miR-134 bound limk1 3'-UTR. MiR-134 overexpression inhibited limk1 mRNA and protein expressions in neurons. CONCLUSION: Blockage of miR-134 upregulates limk1 expression and downregulated cofilin expression in hippocampus of the SE rats. This mechanism may contribute to the neuroprotective effects of Ant-134.


Asunto(s)
Antagomirs/uso terapéutico , Quinasas Lim/genética , MicroARNs/genética , Convulsiones/terapia , Estado Epiléptico/terapia , Regulación hacia Arriba , Animales , Células Cultivadas , Terapia Genética , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Neuronas/metabolismo , Neuronas/patología , Ratas Sprague-Dawley , Convulsiones/genética , Convulsiones/patología , Estado Epiléptico/genética , Estado Epiléptico/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA