Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(6): 1330-1341.e13, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31761532

RESUMEN

Non-coding regions amplified beyond oncogene borders have largely been ignored. Using a computational approach, we find signatures of significant co-amplification of non-coding DNA beyond the boundaries of amplified oncogenes across five cancer types. In glioblastoma, EGFR is preferentially co-amplified with its two endogenous enhancer elements active in the cell type of origin. These regulatory elements, their contacts, and their contribution to cell fitness are preserved on high-level circular extrachromosomal DNA amplifications. Interrogating the locus with a CRISPR interference screening approach reveals a diversity of additional elements that impact cell fitness. The pattern of fitness dependencies mirrors the rearrangement of regulatory elements and accompanying rewiring of the chromatin topology on the extrachromosomal amplicon. Our studies indicate that oncogene amplifications are shaped by regulatory dependencies in the non-coding genome.


Asunto(s)
Cromosomas Humanos/genética , Elementos de Facilitación Genéticos , Amplificación de Genes , Oncogenes , Acetilación , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Cromatina/metabolismo , ADN de Neoplasias/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Genes Relacionados con las Neoplasias , Sitios Genéticos , Glioblastoma/genética , Glioblastoma/patología , Histonas/metabolismo , Humanos , Neuroglía/metabolismo
2.
Mol Cell ; 83(23): 4334-4351.e7, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37979586

RESUMEN

Growth factor receptors rank among the most important oncogenic pathways, but pharmacologic inhibitors often demonstrate limited benefit as monotherapy. Here, we show that epidermal growth factor receptor (EGFR) signaling repressed N6-methyladenosine (m6A) levels in glioblastoma stem cells (GSCs), whereas genetic or pharmacologic EGFR targeting elevated m6A levels. Activated EGFR induced non-receptor tyrosine kinase SRC to phosphorylate the m6A demethylase, AlkB homolog 5 (ALKBH5), thereby inhibiting chromosomal maintenance 1 (CRM1)-mediated nuclear export of ALKBH5 to permit sustained mRNA m6A demethylation in the nucleus. ALKBH5 critically regulated ferroptosis through m6A modulation and YTH N6-methyladenosine RNA binding protein (YTHDF2)-mediated decay of the glutamate-cysteine ligase modifier subunit (GCLM). Pharmacologic targeting of ALKBH5 augmented the anti-tumor efficacy of EGFR and GCLM inhibitors, supporting an EGFR-ALKBH5-GCLM oncogenic axis. Collectively, EGFR reprograms the epitranscriptomic landscape through nuclear retention of the ALKBH5 demethylase to protect against ferroptosis, offering therapeutic paradigms for the treatment of lethal cancers.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Receptores ErbB , Ferroptosis , Glioblastoma , Humanos , Adenosina/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Receptores ErbB/genética , Ferroptosis/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , ARN Mensajero/genética
3.
Mol Cell ; 82(20): 3919-3931.e7, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36270249

RESUMEN

Cancer-specific TERT promoter mutations have been linked to the reactivation of epigenetically silenced TERT gene by creating de novo binding motifs for E-Twenty-Six transcription factors, especially GABPA. How these mutations switch on TERT from epigenetically repressed states to expressed states have not been defined. Here, we revealed that EGFR activation induces ERK1/2-dependent phosphorylation of argininosuccinate lyase (ASL) at Ser417 (S417), leading to interactions between ASL and GABPA at the mutant regions of TERT promoters. The ASL-generated fumarate inhibits KDM5C, leading to enhanced trimethylation of histone H3 Lys4 (H3K4me3), which in turn promotes the recruitment of c-Myc to TERT promoters for TERT expression. Expression of ASL S417A, which abrogates its binding with GABPA, results in reduced TERT expression, inhibited telomerase activity, shortened telomere length, and impaired brain tumor growth in mice. This study reveals an unrecognized mechanistic insight into epigenetically activation of mutant TERT promoters where GABPA-interacted ASL plays an instrumental role.


Asunto(s)
Glioblastoma , Telomerasa , Animales , Ratones , Argininosuccinatoliasa/genética , Argininosuccinatoliasa/metabolismo , Línea Celular Tumoral , Receptores ErbB/genética , Fumaratos , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Histonas/genética , Histonas/metabolismo , Mutación , Telomerasa/genética , Telomerasa/metabolismo , Telómero/metabolismo , Acortamiento del Telómero , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas
5.
Nature ; 553(7686): 101-105, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29258295

RESUMEN

Genomic sequencing has driven precision-based oncology therapy; however, the genetic drivers of many malignancies remain unknown or non-targetable, so alternative approaches to the identification of therapeutic leads are necessary. Ependymomas are chemotherapy-resistant brain tumours, which, despite genomic sequencing, lack effective molecular targets. Intracranial ependymomas are segregated on the basis of anatomical location (supratentorial region or posterior fossa) and further divided into distinct molecular subgroups that reflect differences in the age of onset, gender predominance and response to therapy. The most common and aggressive subgroup, posterior fossa ependymoma group A (PF-EPN-A), occurs in young children and appears to lack recurrent somatic mutations. Conversely, posterior fossa ependymoma group B (PF-EPN-B) tumours display frequent large-scale copy number gains and losses but have favourable clinical outcomes. More than 70% of supratentorial ependymomas are defined by highly recurrent gene fusions in the NF-κB subunit gene RELA (ST-EPN-RELA), and a smaller number involve fusion of the gene encoding the transcriptional activator YAP1 (ST-EPN-YAP1). Subependymomas, a distinct histologic variant, can also be found within the supratetorial and posterior fossa compartments, and account for the majority of tumours in the molecular subgroups ST-EPN-SE and PF-EPN-SE. Here we describe mapping of active chromatin landscapes in 42 primary ependymomas in two non-overlapping primary ependymoma cohorts, with the goal of identifying essential super-enhancer-associated genes on which tumour cells depend. Enhancer regions revealed putative oncogenes, molecular targets and pathways; inhibition of these targets with small molecule inhibitors or short hairpin RNA diminished the proliferation of patient-derived neurospheres and increased survival in mouse models of ependymomas. Through profiling of transcriptional enhancers, our study provides a framework for target and drug discovery in other cancers that lack known genetic drivers and are therefore difficult to treat.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Ependimoma/tratamiento farmacológico , Ependimoma/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes/genética , Terapia Molecular Dirigida , Oncogenes/genética , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Ependimoma/clasificación , Ependimoma/patología , Femenino , Humanos , Ratones , Medicina de Precisión , Interferencia de ARN , Ensayos Antitumor por Modelo de Xenoinjerto
6.
PLoS Genet ; 13(1): e1006535, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28072828

RESUMEN

Folliculogenesis is a progressive and highly regulated process, which is essential to provide ova for later reproductive life, requires the bidirectional communication between the oocyte and granulosa cells. This physical connection-mediated communication conveys not only the signals from the oocyte to granulosa cells that regulate their proliferation but also metabolites from the granulosa cells to the oocyte for biosynthesis. However, the underlying mechanism of establishing this communication is largely unknown. Here, we report that oocyte geranylgeranyl diphosphate (GGPP), a metabolic intermediate involved in protein geranylgeranylation, is required to establish the oocyte-granulosa cell communication. GGPP and geranylgeranyl diphosphate synthase (Ggpps) levels in oocytes increased during early follicular development. The selective depletion of GGPP in mouse oocytes impaired the proliferation of granulosa cells, primary-secondary follicle transition and female fertility. Mechanistically, GGPP depletion inhibited Rho GTPase geranylgeranylation and its GTPase activity, which was responsible for the accumulation of cell junction proteins in the oocyte cytoplasm and the failure to maintain physical connection between oocyte and granulosa cells. GGPP ablation also blocked Rab27a geranylgeranylation, which might account for the impaired secretion of oocyte materials such as Gdf9. Moreover, GGPP administration restored the defects in oocyte-granulosa cell contact, granulosa cell proliferation and primary-secondary follicle transition in Ggpps depletion mice. Our study provides the evidence that GGPP-mediated protein geranylgeranylation contributes to the establishment of oocyte-granulosa cell communication and then regulates the primary-secondary follicle transition, a key phase of folliculogenesis essential for female reproductive function.


Asunto(s)
Comunicación Celular , Farnesiltransferasa/metabolismo , Células de la Granulosa/metabolismo , Complejos Multienzimáticos/metabolismo , Oocitos/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Animales , Células Cultivadas , Farnesiltransferasa/genética , Femenino , Factor 9 de Diferenciación de Crecimiento/metabolismo , Ratones , Ratones Endogámicos C57BL , Complejos Multienzimáticos/genética , Folículo Ovárico/citología , Folículo Ovárico/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Unión al GTP rab/metabolismo , Proteínas rab27 de Unión a GTP
7.
J Biol Chem ; 290(33): 20086-97, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26112408

RESUMEN

Elevated circulating free fatty acid levels are important contributors to insulin resistance in the muscle and liver, but the underlying mechanisms require further elucidation. Here, we show that geranylgeranyl diphosphate synthase 1 (GGPPS), which is a branch point enzyme in the mevalonic acid pathway, promotes lipid-induced muscle insulin resistance through activation of the RhoA/Rho kinase signaling pathway. We have found that metabolic perturbation would increase GGPPS expression in the skeletal muscles of db/db mice and high fat diet-fed mice. To address the metabolic effects of GGPPS activity in skeletal muscle, we generated mice with specific GGPPS deletions in their skeletal muscle tissue. Heterozygous knock-out of GGPPS in the skeletal muscle improved systemic insulin sensitivity and glucose homeostasis in mice fed both normal chow and high fat diets. These metabolic alterations were accompanied by activated PI3K/Akt signaling and enhanced glucose uptake in the skeletal muscle. Further investigation showed that the free fatty acid-stimulated GGPPS expression in the skeletal muscle was able to enhance the geranylgeranylation of RhoA, which further induced the inhibitory phosphorylation of IRS-1 (Ser-307) by increasing Rho kinase activity. These results implicate a crucial role of the GGPPS/RhoA/Rho kinase/IRS-1 pathway in skeletal muscle, in which it mediates lipid-induced systemic insulin resistance in obese mice. Therefore, skeletal muscle GGPPS may represent a potential pharmacological target for the prevention and treatment of obesity-related type 2 diabetes.


Asunto(s)
Farnesiltransferasa/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos , Complejos Multienzimáticos/metabolismo , Músculo Esquelético/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/enzimología , Farnesiltransferasa/genética , Ratones , Complejos Multienzimáticos/genética , Obesidad/complicaciones , Obesidad/enzimología
8.
Am J Pathol ; 185(2): 513-23, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25438063

RESUMEN

The sequential secretion of insulin and glucagon delicately maintains glucose homeostasis by inhibiting or enhancing hepatic gluconeogenesis during postprandial or fasting states, respectively. Increased glucagon/insulin ratio is believed to be a major cause of the hyperglycemia seen in type 2 diabetes. Herein, we reveal that the early growth response gene-1 (Egr-1) can be transiently activated by glucagon in hepatocytes, which mediates glucagon-regulated gluconeogenesis by increasing the expression of gluconeogenesis genes. Blockage of Egr-1 function in the liver of mice led to lower fasting blood glucose, better pyruvate tolerance, and higher hepatic glycogen content. The mechanism analysis demonstrated that Egr-1 can directly bind to the promoter of C/EBPa and regulate the expression of gluconeogenesis genes in the later phase of glucagon stimulation. The transient increase of Egr-1 by glucagon kept the glucose homeostasis after fasting for longer periods of time, whereas constitutive Egr-1 elevation found in the liver of db/db mice and high serum glucagon level overactivated the C/EBPa/gluconeogenesis pathway and resulted in hyperglycemia. Blockage of Egr-1 activation in prediabetic db/db mice was able to delay the progression of diabetes. Our results suggest that dysregulation of Egr-1/C/EBPa on glucagon stimulation may provide an alternative mechanistic explanation for type 2 diabetes.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Gluconeogénesis , Hígado/metabolismo , Animales , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/patología , Glucagón/metabolismo , Glucosa/metabolismo , Hígado/patología , Masculino , Ratones
9.
Biochem Biophys Res Commun ; 457(4): 514-9, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25582775

RESUMEN

MILI, a member of the PIWI/AGO gene family, has been well documented to maintain genome integrity by transposon silencing in animal germ cells. It has been reported to be selectively expressed in precancerous stem cells (pCSCs), tumor cell lines and various malignancies. However, the underlying mechanism remains largely unclear. Here, we found that MILI is expressed in the melanoma cell line B16 but not in the highly metastatic mouse melanoma model B16BL6. Interestingly, the knockdown of MILI in B16 could activate MAGEA expression and increase the cell migration ability, whereas the overexpression of MILI in B16BL6 could inhibit MAGEA expression and decrease the cell migration ability. Further investigations showed that MILI can methylate LINE1, which is crucial for MAGEA expression and melanoma cell migration. Our results provide a novel function of MILI in melanoma metastasis and tumor progression.


Asunto(s)
Proteínas Argonautas/metabolismo , Movimiento Celular , Metilación de ADN , Elementos de Nucleótido Esparcido Largo , Melanoma/metabolismo , Animales , Proteínas Argonautas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Melanoma/genética , Melanoma/patología , Ratones , Proteínas de Neoplasias/genética
10.
Neuro Oncol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721826

RESUMEN

BACKGROUND: The high fatality rate of glioblastoma (GBM) is attributed to glioblastoma stem cells (GSCs), which exhibit heterogeneity and therapeutic resistance. Metabolic plasticity of mitochondria is the hallmark of GSCs. Targeting mitochondrial biogenesis of GSCs is crucial for improving clinical prognosis in GBM patients. METHODS: SMYD2-induced PGC1α methylation and followed nuclear export is confirmed by co-immunoprecipitation, cellular fractionation, and immunofluorescence. The effects of SMYD2/PGC1α/CRM1 axis on GSCs mitochondrial biogenesis is validated by OCR, ECAR and intracranial glioma model. RESULTS: PGC1α methylation causes disabled mitochondrial function to maintain the stemness, thereby enhancing radio-resistance of GSCs. SMYD2 drives PGC1α K224 methylation (K224me), which is essential for promoting the stem-like characteristics of GSCs. PGC1α K224me is preferred binding with CRM1, accelerating PGC1α nuclear export and subsequent dysfunction. Targeting PGC1α methylation exhibits significant radiotherapeutic efficacy and prolongs patient survival. CONCLUSIONS: These findings unveil a novel regulatory pathway involving mitochondria that governs stemness in GSCs, thereby emphasizing promising therapeutic strategies targeting PGC1α and mitochondria for the treatment of GBM.

11.
Cancer Cell ; 42(6): 968-984.e9, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38788719

RESUMEN

Glioblastomas (GBM) are incurable central nervous system (CNS) cancers characterized by substantial myeloid cell infiltration. Whether myeloid cell-directed therapeutic targets identified in peripheral non-CNS cancers are applicable to GBM requires further study. Here, we identify that the critical immunosuppressive target in peripheral cancers, triggering receptor expressed on myeloid cells-2 (TREM2), is immunoprotective in GBM. Genetic or pharmacological TREM2 deficiency promotes GBM progression in vivo. Single-cell and spatial sequencing reveals downregulated TREM2 in GBM-infiltrated myeloid cells. TREM2 negatively correlates with immunosuppressive myeloid and T cell exhaustion signatures in GBM. We further demonstrate that during GBM progression, CNS-enriched sphingolipids bind TREM2 on myeloid cells and elicit antitumor responses. Clinically, high TREM2 expression in myeloid cells correlates with better survival in GBM. Adeno-associated virus-mediated TREM2 overexpression impedes GBM progression and synergizes with anti-PD-1 therapy. Our results reveal distinct functions of TREM2 in CNS cancers and support organ-specific myeloid cell remodeling in cancer immunotherapy.


Asunto(s)
Glioblastoma , Glicoproteínas de Membrana , Receptores Inmunológicos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Humanos , Animales , Ratones , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Células Mieloides/metabolismo , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Línea Celular Tumoral , Ratones Endogámicos C57BL , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo
12.
Sci Transl Med ; 16(739): eadg5553, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507470

RESUMEN

Glioblastoma, the most lethal primary brain tumor, harbors glioma stem cells (GSCs) that not only initiate and maintain malignant phenotypes but also enhance therapeutic resistance. Although frequently mutated in glioblastomas, the function and regulation of PTEN in PTEN-intact GSCs are unknown. Here, we found that PTEN directly interacted with MMS19 and competitively disrupted MMS19-based cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) machinery in differentiated glioma cells. PTEN was specifically succinated at cysteine (C) 211 in GSCs compared with matched differentiated glioma cells. Isotope tracing coupled with mass spectrometry analysis confirmed that fumarate, generated by adenylosuccinate lyase (ADSL) in the de novo purine synthesis pathway that is highly activated in GSCs, promoted PTEN C211 succination. This modification abrogated the interaction between PTEN and MMS19, reactivating the CIA machinery pathway in GSCs. Functionally, inhibiting PTEN C211 succination by reexpressing a PTEN C211S mutant, depleting ADSL by shRNAs, or consuming fumarate by the US Food and Drug Administration-approved prescription drug N-acetylcysteine (NAC) impaired GSC maintenance. Reexpressing PTEN C211S or treating with NAC sensitized GSC-derived brain tumors to temozolomide and irradiation, the standard-of-care treatments for patients with glioblastoma, by slowing CIA machinery-mediated DNA damage repair. These findings reveal an immediately practicable strategy to target GSCs to treat glioblastoma by combination therapy with repurposed NAC.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamiento farmacológico , Hierro/metabolismo , Glioma/tratamiento farmacológico , Neoplasias Encefálicas/tratamiento farmacológico , Células Madre Neoplásicas/patología , Azufre/metabolismo , Azufre/uso terapéutico , Fumaratos , Línea Celular Tumoral , Fosfohidrolasa PTEN/metabolismo
13.
Nat Commun ; 15(1): 6740, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39112531

RESUMEN

Glioblastoma (GBM) is the most common brain tumor and remains incurable. Primary GBM cultures are widely used tools for drug screening, but there is a lack of genomic and pharmacological characterization for these primary GBM cultures. Here, we collect 50 patient-derived glioma cell (PDGC) lines and characterize them by whole genome sequencing, RNA sequencing, and drug response screening. We identify three molecular subtypes among PDGCs: mesenchymal (MES), proneural (PN), and oxidative phosphorylation (OXPHOS). Drug response profiling reveals that PN subtype PDGCs are sensitive to tyrosine kinase inhibitors, whereas OXPHOS subtype PDGCs are sensitive to histone deacetylase inhibitors, oxidative phosphorylation inhibitors, and HMG-CoA reductase inhibitors. PN and OXPHOS subtype PDGCs stably form tumors in vivo upon intracranial transplantation into immunodeficient mice, whereas most MES subtype PDGCs fail to form tumors in vivo. In addition, PDGCs cultured by serum-free medium, especially long-passage PDGCs, carry MYC/MYCN amplification, which is rare in GBM patients. Our study provides a valuable resource for understanding primary glioma cell cultures and clinical translation and highlights the problems of serum-free PDGC culture systems that cannot be ignored.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Animales , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Ratones , Glioma/genética , Glioma/patología , Glioma/tratamiento farmacológico , Glioma/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Femenino , Masculino , Secuenciación Completa del Genoma , Ensayos Antitumor por Modelo de Xenoinjerto , Genómica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Multiómica
14.
Nat Cancer ; 5(1): 147-166, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172338

RESUMEN

Glioblastoma is the most lethal primary brain tumor with glioblastoma stem cells (GSCs) atop a cellular hierarchy. GSCs often reside in a perivascular niche, where they receive maintenance cues from endothelial cells, but the role of heterogeneous endothelial cell populations remains unresolved. Here, we show that lymphatic endothelial-like cells (LECs), while previously unrecognized in brain parenchyma, are present in glioblastomas and promote growth of CCR7-positive GSCs through CCL21 secretion. Disruption of CCL21-CCR7 paracrine communication between LECs and GSCs inhibited GSC proliferation and growth. LEC-derived CCL21 induced KAT5-mediated acetylation of HMGCS1 on K273 in GSCs to enhance HMGCS1 protein stability. HMGCS1 promoted cholesterol synthesis in GSCs, favorable for tumor growth. Expression of the CCL21-CCR7 axis correlated with KAT5 expression and HMGCS1K273 acetylation in glioblastoma specimens, informing patient outcome. Collectively, glioblastomas contain previously unrecognized LECs that promote the molecular crosstalk between endothelial and tumor cells, offering potentially alternative therapeutic strategies.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Citocinas/metabolismo , Células Endoteliales/metabolismo , Receptores CCR7/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proliferación Celular , Colesterol/metabolismo
15.
Cell Death Differ ; 31(6): 738-752, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594444

RESUMEN

Glioblastoma (GBM) is the most aggressive malignant primary brain tumor characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME). The symbiotic interactions between glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAM) in the TME are critical for tumor progression. Here, we identified that IFI35, a transcriptional regulatory factor, plays both cell-intrinsic and cell-extrinsic roles in maintaining GSCs and the immunosuppressive TME. IFI35 induced non-canonical NF-kB signaling through proteasomal processing of p105 to the DNA-binding transcription factor p50, which heterodimerizes with RELB (RELB/p50), and activated cell chemotaxis in a cell-autonomous manner. Further, IFI35 induced recruitment and maintenance of M2-like TAMs in TME in a paracrine manner. Targeting IFI35 effectively suppressed in vivo tumor growth and prolonged survival of orthotopic xenograft-bearing mice. Collectively, these findings reveal the tumor-promoting functions of IFI35 and suggest that targeting IFI35 or its downstream effectors may provide effective approaches to improve GBM treatment.


Asunto(s)
Glioblastoma , FN-kappa B , Células Madre Neoplásicas , Transducción de Señal , Macrófagos Asociados a Tumores , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Humanos , Animales , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología , FN-kappa B/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Microambiente Tumoral
16.
FEBS Open Bio ; 13(9): 1789-1806, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37489660

RESUMEN

Glioblastoma is one of the most common malignant brain tumors. Vitamin D, primarily its hormonally active form calcitriol, has been reported to have anti-cancer activity. In the present study, we used patient-derived glioma cell lines to examine the effect of vitamin D3 and calcitriol on glioblastoma. Surprisingly, vitamin D3 showed a more significant inhibitory effect than calcitriol on cell viability and proliferation. Vitamin D receptor (VDR) mediates most of the cellular effects of vitamin D, and thus we examined the expression level and function of VDR via gene silencing and gene knockout experiments. We observed that VDR does not affect the sensitivity of patient-derived glioma cell lines to vitamin D3, and the gene encoding VDR is not essential for growth of patient-derived glioma cell lines. RNA sequencing data analysis and sterolomics analysis revealed that vitamin D3 inhibits cholesterol synthesis and cholesterol homeostasis by inhibiting the expression level of 7-dehydrocholesterol reductase, which leads to the accumulation of 7-dehydrocholesterol and other sterol intermediates. In conclusion, our results suggest that vitamin D3, rather than calcitriol, inhibits growth of patient-derived glioma cell lines via inhibition of the cholesterol homeostasis pathway.


Asunto(s)
Colecalciferol , Glioblastoma , Humanos , Colecalciferol/farmacología , Calcitriol/farmacología , Glioblastoma/tratamiento farmacológico , Vitamina D/farmacología , Línea Celular , Homeostasis , Colesterol
17.
J Biomed Res ; 37(5): 326-339, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37750323

RESUMEN

Ionizing radiation is a popular and effective treatment option for glioblastoma (GBM). However, resistance to radiation therapy inevitably occurs during treatment. It is urgent to investigate the mechanisms of radioresistance in GBM and to find ways to improve radiosensitivity. Here, we found that heat shock protein 90 beta family member 1 (HSP90B1) was significantly upregulated in radioresistant GBM cell lines. More importantly, HSP90B1 promoted the localization of glucose transporter type 1, a key rate-limiting factor of glycolysis, on the plasma membrane, which in turn enhanced glycolytic activity and subsequently tumor growth and radioresistance of GBM cells. These findings imply that targeting HSP90B1 may effectively improve the efficacy of radiotherapy for GBM patients, a potential new approach to the treatment of glioblastoma.

18.
Cancer Lett ; 573: 216380, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37660885

RESUMEN

Preoperative MRI is an essential diagnostic and therapeutic reference for gliomas. This study aims to evaluate the prognostic aspect of a radiomics biomarker for glioma and further investigate its relationship with tumor microenvironment and macrophage infiltration. We covered preoperative MRI of 664 glioma patients from three independent datasets: Jiangsu Province Hospital (JSPH, n = 338), The Cancer Genome Atlas dataset (TCGA, n = 252), and Repository of Molecular Brain Neoplasia Data (REMBRANDT, n = 74). Incorporating a multistep post-processing workflow, 20 radiomics features (Rads) were selected and a radiomics survival biomarker (RadSurv) was developed, proving highly efficient in risk stratification of gliomas (cut-off = 1.06), as well as lower-grade gliomas (cut-off = 0.64) and glioblastomas (cut-off = 1.80) through three fixed cut-off values. Through immune infiltration analysis, we found a positive correlation between RadSurv and macrophage infiltration (RMΦ = 0.297, p < 0.001; RM2Φ = 0.241, p < 0.001), further confirmed by immunohistochemical-staining (glioblastomas, n = 32) and single-cell sequencing (multifocal glioblastomas, n = 2). In conclusion, RadSurv acts as a strong prognostic biomarker for gliomas, exhibiting a non-negligible positive correlation with macrophage infiltration, especially with M2 macrophage, which strongly suggests the promise of radiomics-based models as a preoperative alternative to conventional genomics for predicting tumor macrophage infiltration and provides clinical guidance for immunotherapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/terapia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Genómica , Macrófagos , Microambiente Tumoral
19.
Neuro Oncol ; 25(11): 1947-1962, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37280112

RESUMEN

BACKGROUND: Mitochondrial hyperpolarization achieved by the elevation of mitochondrial quality control (MQC) activity is a hallmark of glioblastoma (GBM). Therefore, targeting the MQC process to disrupt mitochondrial homeostasis should be a promising approach for GBM therapy. METHODS: We used 2-photon fluorescence microscopy, Fluorescence-Activated Cell Sorting, and confocal microscopy with specific fluorescent dyes to detect the mitochondrial membrane potential (MMP) and mitochondrial structures. Mitophagic flux was measured with mKeima. RESULTS: MP31, a phosphatase and tensin homolog (PTEN) uORF-translated and mitochondria-localized micropeptide, disrupted the MQC process and inhibited GBM tumorigenesis. Re-expression of MP31 in patient-derived GBM cells induced MMP loss to trigger mitochondrial fission but blocked mitophagic flux, leading to the accumulation of damaged mitochondria in cells, followed by reactive oxygen species production and DNA damage. Mechanistically, MP31 inhibited lysosome function and blocked lysosome fusion with mitophagosomes by competing with V-ATPase A1 for lactate dehydrogenase B (LDHB) binding to induce lysosomal alkalinization. Furthermore, MP31 enhanced the sensitivity of GBM cells to TMZ by suppressing protective mitophay in vitro and in vivo, but showed no side effects on normal human astrocytes or microglia cells (MG). CONCLUSIONS: MP31 disrupts cancerous mitochondrial homeostasis and sensitizes GBM cells to current chemotherapy, without inducing toxicity in normal human astrocytes and MG. MP31 is a promising candidate for GBM treatment.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/metabolismo , Sistemas de Lectura Abierta , Mitocondrias/metabolismo , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Micropéptidos
20.
Neuro Oncol ; 25(8): 1428-1440, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-36521011

RESUMEN

BACKGROUND: Cancer cells including cancer stem cells exhibit a higher rate of ribosome biogenesis than normal cells to support rapid cell proliferation in tumors. However, the molecular mechanisms governing the preferential ribosome biogenesis in glioma stem cells (GSCs) remain unclear. In this work, we show that the novel INHAT repressor (NIR) promotes ribosomal DNA (rDNA) transcription to support GSC proliferation and glioblastoma (GBM) growth, suggesting that NIR is a potential therapeutic target for GBM. METHODS: Immunoblotting, immunohistochemical and immunofluorescent analysis were used to determine NIR expression in GSCs and human GBMs. Using shRNA-mediated knockdown, we assessed the role and functional significance of NIR in GSCs and GSC-derived orthotopic GBM xenografts. We further performed mass spectrometry analysis, chromatin immunoprecipitation, and other biochemical assays to define the molecular mechanisms by which NIR promotes GBM progression. RESULTS: Our results show that high expression of NIR predicts poor survival in GBM patients. NIR is enriched in the nucleoli of GSCs in human GBMs. Disrupting NIR markedly suppresses GSC proliferation and tumor growth by inhibiting rDNA transcription and pre-ribosomal RNA synthesis. In mechanistic studies, we find that NIR activates rDNA transcription to promote GSC proliferation by cooperating with Nucleolin (NCL) and Nucleophosmin 1 (NPM1), 2 important nucleolar transcription factors. CONCLUSIONS: Our study uncovers a critical role of NIR-mediated rDNA transcription in the malignant progression of GBM, indicating that targeting this axis may provide a novel therapeutic strategy for GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patología , ADN Ribosómico/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioma/patología , Células Madre Neoplásicas/metabolismo , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA