Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 22(2): 205-215, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33398183

RESUMEN

Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8+ T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1α-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell-intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Metabolismo Energético , Activación de Linfocitos , Linfocitos Infiltrantes de Tumor/metabolismo , Melanoma Experimental/metabolismo , Mitocondrias/metabolismo , Microambiente Tumoral , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Técnicas de Cocultivo , Femenino , Células HEK293 , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/inmunología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Hipoxia Tumoral
2.
Immunity ; 51(3): 548-560.e4, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31471106

RESUMEN

Immunotherapy can reinvigorate dormant responses to cancer, but response rates remain low. Oncolytic viruses, which replicate in cancer cells, induce tumor lysis and immune priming, but their immune consequences are unclear. We profiled the infiltrate of aggressive melanomas induced by oncolytic Vaccinia virus using RNA sequencing and found substantial remodeling of the tumor microenvironment, dominated by effector T cell influx. However, responses to oncolytic viruses were incomplete due to metabolic insufficiencies induced by the tumor microenvironment. We identified the adipokine leptin as a potent metabolic reprogramming agent that supported antitumor responses. Leptin metabolically reprogrammed T cells in vitro, and melanoma cells expressing leptin were immunologically controlled in mice. Engineering oncolytic viruses to express leptin in tumor cells induced complete responses in tumor-bearing mice and supported memory development in the tumor infiltrate. Thus, leptin can provide metabolic support to tumor immunity, and oncolytic viruses represent a platform to deliver metabolic therapy.


Asunto(s)
Leptina/inmunología , Melanoma/inmunología , Virus Oncolíticos/inmunología , Linfocitos T/inmunología , Animales , Línea Celular Tumoral , Inmunoterapia/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Microambiente Tumoral/inmunología , Virus Vaccinia/inmunología
3.
Mol Cell Proteomics ; 23(6): 100770, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641226

RESUMEN

Inhalation of crystalline silica dust induces incurable lung damage, silicosis, and pulmonary fibrosis. However, the mechanisms of the lung injury remain poorly understood, with limited therapeutic options aside from lung transplantation. Posttranslational modifications can regulate the function of proteins and play an important role in studying disease mechanisms. To investigate changes in posttranslational modifications of proteins in silicosis, combined quantitative proteome, acetylome, and succinylome analyses were performed with lung tissues from silica-injured and healthy mice using liquid chromatography-mass spectrometry. Combined analysis was applied to the three omics datasets to construct a protein landscape. The acetylation and succinylation of the key transcription factor STAT1 were found to play important roles in the silica-induced pathophysiological changes. Modulating the acetylation level of STAT1 with geranylgeranylacetone effectively inhibited the progression of silicosis. This report revealed a comprehensive landscape of posttranslational modifications in silica-injured mouse and presented a novel therapeutic strategy targeting the posttranslational level for silica-induced lung diseases.


Asunto(s)
Lisina , Procesamiento Proteico-Postraduccional , Proteoma , Factor de Transcripción STAT1 , Silicosis , Animales , Silicosis/metabolismo , Silicosis/tratamiento farmacológico , Silicosis/patología , Factor de Transcripción STAT1/metabolismo , Proteoma/metabolismo , Lisina/metabolismo , Acetilación/efectos de los fármacos , Ratones , Dióxido de Silicio , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones Endogámicos C57BL , Proteómica/métodos , Masculino , Ácido Succínico/metabolismo
4.
J Transl Med ; 22(1): 624, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965537

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases. NAFLD leads to liver fibrosis and hepatocellular carcinoma, and it also has systemic effects associated with metabolic diseases, cardiovascular diseases, chronic kidney disease, and malignant tumors. Therefore, it is important to diagnose NAFLD early to prevent these adverse effects. METHODS: The GSE89632 dataset was downloaded from the Gene Expression Omnibus database, and then the optimal genes were screened from the data cohort using lasso and Support Vector Machine Recursive Feature Elimination (SVM-RFE). The ROC values of the optimal genes for the diagnosis of NAFLD were calculated. The relationship between optimal genes and immune cells was determined using the DECONVOLUTION algorithm CIBERSORT. Finally, the specificity and sensitivity of the diagnostic genes were verified by detecting the expression of the diagnostic genes in blood samples from 320 NAFLD patients and liver samples from 12 mice. RESULTS: Through machine learning we identified FOSB, GPAT3, RGCC and RNF43 were the key diagnostic genes for NAFLD, and they were further demonstrated by a receiver operating characteristic curve analysis. We found that the combined diagnosis of the four genes identified NAFLD samples well from normal samples (AUC = 0.997). FOSB, GPAT3, RGCC and RNF43 were strongly associated with immune cell infiltration. We also experimentally examined the expression of these genes in NAFLD patients and NAFLD mice, and the results showed that these genes are highly specific and sensitive. CONCLUSIONS: Data from both clinical and animal studies demonstrate the high sensitivity, specificity and safety of FOSB, GPAT3, RGCC and RNF43 for the diagnosis of NAFLD. The relationship between diagnostic key genes and immune cell infiltration may help to understand the development of NAFLD. The study was reviewed and approved by Ethics Committee of Tianjin Second People's Hospital in 2021 (ChiCTR1900024415).


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Humanos , China , Animales , Curva ROC , Reproducibilidad de los Resultados , Ratones , Ratones Endogámicos C57BL , Masculino , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Máquina de Vectores de Soporte , Regulación de la Expresión Génica
5.
J Surg Res ; 300: 298-308, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38838427

RESUMEN

INTRODUCTION: The recent results of the JCOG 0802 and CALGB 140503 studies suggest that segmentectomy should be considered instead of lobectomy for patients with peripheral <2 cm node-negative non-small cell lung cancer (NSCLC). This study aimed to test this hypothesis in a retrospective analysis of a larger dataset of patients with stage I NSCLC recorded in the Surveillance, Epidemiology, and End Results database. METHODS: Patients with all stage I NSCLC (≤4 cm in size) who underwent either segmentectomy or lobectomy from 2000 to 2017 were analyzed. The primary endpoints were overall survival and lung cancer-specific survival, while the secondary endpoints were the 30-day and 90-day mortality. RESULTS: Overall, 32,673 patients treated by lobectomy and 2166 patients treated by segmentectomy were included in the initial data collection. After 1:1 propensity score matching (PSM), 2016 patients in each group were enrolled in the final analysis with well-balanced baseline characteristics. After PSM, there was no difference between segmentectomy and lobectomy for all stage IA NSCLC (≤3 cm in size) in both overall survival and lung cancer-specific survival (hazard ratio: 0.87 [0.74-1.02], P value: 0.09 and hazard ratio: 0.81 [0.4-1.03], P value: 0.09, respectively). Furthermore, lobectomy had higher 30-day mortality than segmentectomy: 1.1% versus 2.1%, P value: 0.01. However, this difference was not significant for 90-day mortality, even after PSM (3.9% versus 3.0%, P value: 0.17). CONCLUSIONS: We found no evidence to support the use of lobectomy rather than segmentectomy in stage IA NSCLC in terms of either overall or lung cancer-specific long-term survival. The choice of lobectomy may also be detrimental to early postoperative recovery.

6.
Int J Med Sci ; 21(2): 341-356, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169592

RESUMEN

The in-situ osmolarity is an important physicochemical factor that regulates cell fate of nucleus pulposus cells (NPCs). Our previous studies demonstrated that reduced N-cadherin (NCDH) expression in nucleus pulposus cells is associated with cellular damage under hyper-osmolarity microenvironment. This study was aimed at exploring the impacts of NCDH on senescence and apoptosis of NPCs, as well as the potential molecular mechanism. By comparing NPCs from patients with lumbar fractures and lumbar disc herniation, we identified a correlation between decreased NCDH expression and increased endoplasmic reticulum stress (ERS), resulting in undesirable cell fate (senescence and apoptosis). After blocking Reactive oxygen species (ROS) or ERS, it was indicated that hyper-osmolarity microenvironment induced ERS was ROS-dependent. Further results demonstrated the correlation in rat NPCs. Upregulation of NCDH expression reduced ROS-dependent ERS, thus limiting undesirable cell fates in vitro. This was further confirmed through the rat tail acupuncture injection model. NCDH overexpression successfully mitigated ERS, preserved extracellular matrix production and alleviating intervertebral disc degeneration in vivo. Together, NCDH can alleviate senescence and apoptosis of NPCs by suppressing ROS-dependent ERS via the ATF4-CHOP signaling axis in the hyper-osmolarity microenvironment, thus highlighting the therapeutic potential of NCDH in combating degenerative disc diseases.


Asunto(s)
Degeneración del Disco Intervertebral , Núcleo Pulposo , Animales , Humanos , Ratas , Apoptosis/genética , Cadherinas/genética , Cadherinas/metabolismo , Senescencia Celular/genética , Estrés del Retículo Endoplásmico/genética , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/terapia , Núcleo Pulposo/metabolismo , Concentración Osmolar , Especies Reactivas de Oxígeno/metabolismo
7.
Angew Chem Int Ed Engl ; 63(10): e202318621, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38242850

RESUMEN

Perovskite solar cell (pero-SC) has attracted extensive studies as a promising photovoltaic technology, wherein the electron extraction and transfer exhibit pivotal effect to the device performance. The planar SnO2 electron transport layer (ETL) has contributed the recent record power conversion efficiency (PCE) of the pero-SCs, yet still suffers from surface defects of SnO2 nanoparticles which brings energy loss and phase instability. Herein, we report a localized oxidation embellishing (LOE) strategy by applying (NH4 )2 CrO4 on the SnO2 ETL. The LOE strategy builds up plentiful nano-heterojunctions of p-Cr2 O3 /n-SnO2 and the nano-heterojunctions compensate the surface defects and realize benign energy alignment, which reduces surface non-radiative recombination and voltage loss of the pero-SCs. Meanwhile, the decrease of lattice mismatch released the lattice distortion and eliminated tensile stress, contributing to better stability of the devices. The pero-SCs based on α-FAPbI3 with the SnO2 ETL treated by the LOE strategy realized a PCE of 25.72 % (certified as 25.41 %), along with eminent stability performance of T90 >700 h. This work provides a brand-new view for defect modification of SnO2 electron transport layer.

8.
J Evid Based Dent Pract ; 24(1): 101933, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38448118

RESUMEN

OBJECTIVES: Accuracy is a crucial factor when assessing the quality of digital impressions. This systematic review aims to assess the accuracy of intraoral scan (IOS) in obtaining digital impressions of edentulous jaws. METHODS: This systematic review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and was registered in the International Prospective Register of Systematic Reviews (PROSPERO ID: CRD42022382983). A thorough retrieval of 7 electronic databases was undertaken, encompassing MEDLINE (PubMed), Web of Science, EMBASE, Scopus, Cochrane Library, Virtual Health Library, and Open gray, through September 11, 2023. A snowball search was performed by tracing the reference lists of the included studies. The Population, Intervention, Comparison, and Outcome (PICO) question of this systematic review was: "What is the accuracy of intraoral scan in obtaining digital impressions of edentulous arches?" The Modified Methodological Index for Nonrandomized Studies (MINORS) was employed to assess the risk of bias. RESULTS: Among the studies retrieved from databases and manual search, a total of 25 studies were selected for inclusion in this systematic review, including 9 in vivo and 16 in vitro studies. Twenty-one of the included studies utilized the 3D deviation analysis method, while 4 studies employed the linear or angular deviation analysis method. The accuracy results of in vitro studies indicated a trueness range of 20-600 µm and a precision range of 2-700 µm. Results of in vivo studies indicated a trueness range of 40-1380 µm, while the precision results were not reported. CONCLUSION: According to the results of this study, direct digital impressions by IOS cannot replace the conventional impressions of completely edentulous arches in vivo. Edentulous digital impressions by IOS demonstrated poor accuracy in peripheral areas with mobile tissues, such as the soft palate, vestibular sulcus, and sublingual area.

9.
Clin Genet ; 104(4): 486-490, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37270785

RESUMEN

Premature ovarian insufficiency (POI) is a heterogeneous disease affecting the physical and mental health of millions of women worldwide. The contribution of genetic factors in the pathogenesis of POI has increased, with quite a few of causative genes involved in meiosis. ZMM proteins are a group of conserved proteins participating in meiotic synapsis and crossover maturation. Here, by screening the variations of ZMM genes in our in-house WES database of 1030 idiopathic POI patients, one novel homozygous variation in SPO16 (c.160 + 8A > G) was firstly identified in one patient. The variation was verified to disturb mRNA splicing by minigene assay, produced a non-functional SPO16 protein, and was classified as pathogenetic according to American College of Medical Genetics guideline. During meiotic prophase I, SHOC1 binds to branched DNA and recruits SPO16 and other ZMM proteins to facilitate crossover formation. Together with our recent identified bi-allelic variations of SHOC1 in a published work, this study highlighted the essential roles of ZMM genes in the maintenance of ovarian function and expanded the POI gene spectrum.


Asunto(s)
Meiosis , Insuficiencia Ovárica Primaria , Femenino , Humanos , Intercambio Genético , ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Meiosis/genética , Insuficiencia Ovárica Primaria/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
10.
Biomed Microdevices ; 26(1): 3, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38085348

RESUMEN

We present a label-free microfluidic chip for the segregation of circulating leukemia cells (CLCs) from blood samples, with a focus on its clinical applications in Acute Myeloid Leukemia (AML). The microfluidic chip achieved an approximate capture efficiency of 92%. The study analyzed a comprehensive set of 66 blood specimens from AML patients in different disease stages, including newly diagnosed and relapsing cases, patients in complete remission, and those in partial remission. The results showed a significant difference in CLC counts between active disease stages and remission stages (p < 0.0001), with a proposed threshold of 5 CLCs to differentiate between the two. The microfluidic chip exhibited a sensitivity of 95.4% and specificity of 100% in predicting disease recurrence. Additionally, the captured CLCs were subjected to downstream molecular analysis using droplet digital PCR, allowing for the identification of genetic mutations associated with AML. Comparative analysis with bone marrow aspirate processing by FACS demonstrated the reliability and accuracy of the microfluidic chip in tracking disease burden, with highly agreement results obtained between the two methods. The non-invasive nature of the microfluidic chip and its ability to provide real-time insights into disease progression make it a promising tool for the proactive monitoring and personalized patient care of AML.


Asunto(s)
Leucemia Mieloide Aguda , Microfluídica , Humanos , Reproducibilidad de los Resultados , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Reacción en Cadena de la Polimerasa , Mutación , Pronóstico
11.
Med Teach ; : 1-8, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910012

RESUMEN

INTRODUCTION: Due to policy changes in the context of COVID-19 pandemic, online teaching has become the main form of class in many Chinese universities. Flipped classroom has been widely used in other disciplines, but there is a dearth of evidence available about the use in online teaching of emergency medicine. This study aimed to develop a flipped classroom for online emergency medicine teaching and evaluate its effectiveness by comparing it with traditional lecture-based online teaching. METHODS: A total of 62 clinical medical undergraduates from Jinan University participated in this study from September to December in 2022. An online flipped classroom approach was developed (FC group, n = 31). Traditional lecture-based online teaching was applied as a contrast (LBT group, n = 31). The undergraduates completed examinations and questionnaires at the end of the course. A course experience questionnaire and course examination score were used to evaluate the effectiveness of the flipped classroom approach. RESULTS: Regarding the five dimensions of the course experience questionnaire, the scores for good teaching (3.47 ± 0.50 vs. 2.34 ± 0.48, p < .001), appropriate assessment (3.31 ± 0.68 vs. 2.95 ± 0.71, p = .043) and generic skills (3.16 ± 0.60 vs. 2.72 ± 0.39, p < .001) were higher for the FC group than for the LBT group. There was no significant difference between the two groups in clear goals and standards, and appropriate workload. The undergraduates in the FC group showed significantly higher overall satisfaction than those in the LBT group (3.52 ± 0.1.03 vs. 2.87 ± 0.92, p = .012). The examination scores (77.936 ± 11.573 vs. 70.484 ± 7.434, p < .001), especially the scores for questions related to case analysis (33.032 ± 5.363 vs. 26.968 ± 7.657, p < .001), were significantly higher in the FC group than in the LBT group. CONCLUSIONS: The flipped classroom for online teaching was efficient in improving undergraduates' emergency medical academic performance and promoting the development of clinical case analysis ability. These findings provide an alternative flipped classroom approach for online teaching of emergency medicine.

12.
Pharmacol Rev ; 72(2): 380-413, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32107274

RESUMEN

Ubiquitin (UB) transfer cascades consisting of E1, E2, and E3 enzymes constitute a complex network that regulates a myriad of biologic processes by modifying protein substrates. Deubiquitinating enzymes (DUBs) reverse UB modifications or trim UB chains of diverse linkages. Additionally, many cellular proteins carry UB-binding domains (UBDs) that translate the signals encoded in UB chains to target proteins for degradation by proteasomes or in autophagosomes, as well as affect nonproteolytic outcomes such as kinase activation, DNA repair, and transcriptional regulation. Dysregulation of the UB transfer pathways and malfunctions of DUBs and UBDs play causative roles in the development of many diseases. A greater understanding of the mechanism of UB chain assembly and the signals encoded in UB chains should aid in our understanding of disease pathogenesis and guide the development of novel therapeutics. The recent flourish of protein-engineering approaches such as unnatural amino acid incorporation, protein semisynthesis by expressed protein ligation, and high throughput selection by phage and yeast cell surface display has generated designer proteins as powerful tools to interrogate cell signaling mediated by protein ubiquitination. In this study, we highlight recent achievements of protein engineering on mapping, probing, and manipulating UB transfer in the cell. SIGNIFICANCE STATEMENT: The post-translational modification of proteins with ubiquitin alters the fate and function of proteins in diverse ways. Protein engineering is fundamentally transforming research in this area, providing new mechanistic insights and allowing for the exploration of concepts that can potentially be applied to therapeutic intervention.


Asunto(s)
Ingeniería de Proteínas/métodos , Ubiquitinas/metabolismo , Animales , Enzimas Desubicuitinizantes/metabolismo , Humanos , Ubiquitinación
13.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834687

RESUMEN

Doxorubicin (DOX)-related cardiotoxicity has been recognized as a serious complication of cancer chemotherapy. Effective targeted strategies for myocardial protection in addition to DOX treatment are urgently needed. The purpose of this paper was to determine the therapeutic effect of berberine (Ber) on DOX-triggered cardiomyopathy and explore the underlying mechanism. Our data showed that Ber markedly prevented cardiac diastolic dysfunction and fibrosis, reduced cardiac malondialdehyde (MDA) level and increased antioxidant superoxide dismutase (SOD) activity in DOX-treated rats. Moreover, Ber effectively rescued the DOX-induced production of reactive oxygen species (ROS) and MDA, mitochondrial morphological damage and membrane potential loss in neonatal rat cardiac myocytes and fibroblasts. This effect was mediated by increases in the nuclear accumulation of nuclear erythroid factor 2-related factor 2 (Nrf2) and levels of heme oxygenase-1 (HO-1) and mitochondrial transcription factor A (TFAM). We also found that Ber suppressed the differentiation of cardiac fibroblasts (CFs) into myofibroblasts, as indicated by decreased expression of α-smooth muscle actin (α-SMA), collagen I and collagen III in DOX-treated CFs. Pretreatment with Ber inhibited ROS and MDA production and increased SOD activity and the mitochondrial membrane potential in DOX-challenged CFs. Further investigation indicated that the Nrf2 inhibitor trigonelline reversed the protective effect of Ber on both cardiomyocytes and CFs after DOX stimulation. Taken together, these findings demonstrated that Ber effectively alleviated DOX-induced oxidative stress and mitochondrial damage by activating the Nrf2-mediated pathway, thereby leading to the prevention of myocardial injury and fibrosis. The current study suggests that Ber is a potential therapeutic agent for DOX-induced cardiotoxicity that exerts its effects by activating Nrf2.


Asunto(s)
Berberina , Lesiones Cardíacas , Animales , Ratas , Apoptosis , Berberina/farmacología , Cardiotoxicidad/metabolismo , Doxorrubicina/farmacología , Fibrosis , Lesiones Cardíacas/patología , Miocitos Cardíacos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
14.
FASEB J ; 35(11): e21986, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34662469

RESUMEN

The E6 protein of the human papillomavirus (HPV) underpins important protein interaction networks between the virus and host to promote viral infection. Through its interaction with E6AP, a host E3 ubiquitin (UB) ligase, E6 stirs the protein ubiquitination pathways toward the oncogenic transformation of the infected cells. For a systematic measurement of E6 reprogramming of the substrate pool of E6AP, we performed a proteomic screen based on "orthogonal UB transfer (OUT)" that allowed us to identify the ubiquitination targets of E6AP dependent on the E6 protein of HPV-16, a high-risk viral subtype for the development of cervical cancer. The OUT screen identified more than 200 potential substrates of the E6-E6AP pair based on the transfer of UB from E6AP to the substrate proteins. Among them, we verified that E6 would induce E6AP-catalyzed ubiquitination of importin proteins KPNA1-3, protein phosphatase PGAM5, and arginine methyltransferases CARM1 to trigger their degradation by the proteasome. We further found that E6 could significantly reduce the cellular level of KPNA1 that resulted in the suppression of nuclear transport of phosphorylated STAT1 and the inhibition of interferon-γ-induced apoptosis in cervical cancer cells. Overall, our work demonstrates OUT as a powerful proteomic platform to probe the interaction of E6 and host cells through protein ubiquitination and reveals a new role of E6 in down-regulating nuclear transport proteins to attenuate tumor-suppressive signaling.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Papillomaviridae/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , alfa Carioferinas/metabolismo , Células HEK293 , Células HeLa , Humanos , Interferón gamma/metabolismo , Unión Proteica
15.
J Cell Mol Med ; 25(16): 7961-7972, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34155784

RESUMEN

Geranylgeranylacetone (GGA), an inducer of heat shock proteins, exerts anticancer activity in some tumours. However, the effect of GGA on human osteosarcoma (OS) has not been reported. This work is designed to evaluate the effect of GGA on the proliferation and apoptosis of human OS cells and to explore the underlying mechanisms. It was found that GGA markedly inhibited the proliferation and induced apoptosis of U-2 OS cells in a dose-dependent manner and also up-regulated the expression of heat shock protein 70 (Hsp70). The degradation and ubiquitination of protein arginine N-methyltransferase 1 (PRMT1) were obviously enhanced in U-2 OS cells with CHIP overexpression and GGA treatment. The expression of PRMT1 was reversed in GGA-treated cell after CHIP knockdown. The turnover of PRMT1 was obviously faster in cells overexpressing CHIP than that in control cells. The methylation and activity of STAT3 were induced by PRMT1, resulting in the inhibition of FAS transcription. Overexpression of PRMT1 reversed the effect of GGA on activation of apoptosis-related proteins and U-2 OS cell apoptosis. The expressions of PRMT1 were significantly up-regulated in OS tissues compared with the adjacent normal tissues and benign bone tumours. In conclusion, GGA promotes the degradation of PRMT1 through the Hsp70-CHIP-mediated proteasome pathway, thereby inducing the FAS-triggered cell apoptosis. Inhibition of PRMT1 may be a potential therapeutic strategy for OS patients.


Asunto(s)
Apoptosis , Diterpenos/farmacología , Osteosarcoma/patología , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteolisis , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Osteosarcoma/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Represoras/genética , Ubiquitina-Proteína Ligasas/genética
16.
Genet Med ; 23(12): 2309-2315, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34257419

RESUMEN

PURPOSE: The etiology of premature ovarian insufficiency (POI) is heterogeneous, and genetic factors account for 20-25% of the patients. The primordial follicle pool is determined by the meiosis process, which is initiated by programmed DNA double strand breaks (DSB) and homologous recombination. The objective of the study is to explore the role of DSB formation genes in POI pathogenesis. METHODS: Variants in DSB formation genes were analyzed from a database of exome sequencing in 1,030 patients with POI. The pathogenic effects of the potentially causative variants were verified by further functional studies. RESULTS: Three pathogenic heterozygous variants in PRDM9 and two in ANKRD31 were identified in seven patients. Functional studies showed the variants in PRDM9 impaired its methyltransferase activity, and the ANKRD31 variations disturbed its interaction with another DSB formation factor REC114 by haploinsufficiency effect, indicating the pathogenic effects of the two genes on ovarian function were dosage dependent. CONCLUSION: Our study identified pathogenic variants of PRDM9 and ANKRD31 in POI patients, shedding new light on the contribution of meiotic DSB formation genes in ovarian development, further expanding the genetic architecture of POI.


Asunto(s)
Proteínas de Ciclo Celular/genética , N-Metiltransferasa de Histona-Lisina , Menopausia Prematura , Insuficiencia Ovárica Primaria , Roturas del ADN de Doble Cadena , Femenino , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Meiosis/genética , Insuficiencia Ovárica Primaria/genética
17.
Nutr Metab Cardiovasc Dis ; 31(5): 1454-1466, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33810955

RESUMEN

BACKGROUND AND AIMS: Host-microbiota interactions involving metabolic pathways have been linked to the pathogenesis of atherosclerotic disease and type 2 diabetes. As stable coronary artery disease (SCAD) patients combined with type 2 diabetes have significantly increased risk for cardiac event, we focused on elucidating the role of microbiota affecting cardiometabolic disease development. METHODS AND RESULTS: We used multi-omics analyses (metagenomics and metabolomics) of fecal and serum samples from a prospective cohort including stable coronary artery disease combined with diabetes mellitus (SCAD + T2DM, n = 38), SCAD (n = 71), and healthy control (HC, n = 55). We linked microbiome features to disease severity in a three-pronged association analysis and identified prognostic bacterial biomarkers. We identified that bacterial and metabolic signatures varied significantly between SCAD and SCAD + T2DM groups. SCAD + T2DM individuals were characterized by increased levels of aromatic amino acids and carbohydrates, which correlate with a gut microbiome with enriched biosynthetic potential. Our study also addressed how metformin may confound gut dysbiosis and increase the potential for nitrogen metabolism. In addition, we found that specific bacterial taxa Ruminococcus torques [HR: 2.363 (08-4.56), P = 0.03] was predictive of cardiac survival outcomes. CONCLUSION: Overall, our study identified relationships between features of the gut microbiota (GM) and circulating metabolites, providing a new direction for future studies aiming to understand the host-GM interplay in atherosclerotic cardiovascular pathogenesis.


Asunto(s)
Bacterias/metabolismo , Enfermedad de la Arteria Coronaria/microbiología , Diabetes Mellitus Tipo 2/microbiología , Microbioma Gastrointestinal , Intestinos/microbiología , Anciano , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Biomarcadores/sangre , Estudios de Casos y Controles , Clostridiales/crecimiento & desarrollo , Clostridiales/metabolismo , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/diagnóstico , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Disbiosis , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Hipoglucemiantes/uso terapéutico , Masculino , Metabolómica , Metagenómica , Metformina/uso terapéutico , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos
18.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638625

RESUMEN

Glycosyltransferase OGT catalyzes the conjugation of O-linked ß-D-N-acetylglucosamine (O-GlcNAc) to Ser and Thr residues of the cellular proteins and regulates many key processes in the cell. Here, we report the identification of OGT as a ubiquitination target of HECT-type E3 ubiquitin (UB) ligase E6AP, whose overexpression in HEK293 cells would induce the degradation of OGT. We also found that the expression of E6AP in HeLa cells with the endogenous expression of the E6 protein of the human papillomavirus (HPV) would accelerate OGT degradation by the proteasome and suppress O-GlcNAc modification of OGT substrates in the cell. Overall, our study establishes a new mechanism of OGT regulation by the ubiquitin-proteasome system (UPS) that mediates the crosstalk between protein ubiquitination and O-GlcNAcylation pathways underlying diverse cellular processes.


Asunto(s)
N-Acetilglucosaminiltransferasas/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Papillomaviridae/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación/fisiología
19.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34884552

RESUMEN

Dexmedetomidine (DEX), a selective α2 adrenergic receptor (AR) agonist, is commonly used as a sedative drug during critical illness. In the present study, we explored a novel accelerative effect of DEX on cardiac fibroblast (CF) differentiation mediated by LPS and clarified its potential mechanism. LPS apparently increased the expression of α-SMA and collagen I/III and the phosphorylation of p38 and Smad-3 in the CFs of mice. These effects were significantly enhanced by DEX through increasing α2A-AR expression in CFs after LPS stimulation. The CFs from α2A-AR knockout mice were markedly less sensitive to DEX treatment than those of wild-type mice. Inhibition of protein kinase C (PKC) abolished the enhanced effects of DEX on LPS-induced differentiation of CFs. We also found that the α-SMA level in the second-passage CFs was much higher than that in the nonpassage and first-passage CFs. However, after LPS stimulation, the TNF-α released from the nonpassage CFs was much higher than that in the first- and second-passage CFs. DEX had no effect on LPS-induced release of TNF-α and IL-6 from CFs. Further investigation indicated that DEX promoted cardiac fibrosis and collagen I/III synthesis in mice exposed to LPS for four weeks. Our results demonstrated that DEX effectively accelerated LPS-induced differentiation of CFs to myofibroblasts through the PKC-p38-Smad2/3 signaling pathway by activating α2A-AR.


Asunto(s)
Diferenciación Celular , Colágeno Tipo III/metabolismo , Colágeno Tipo I/metabolismo , Dexmedetomidina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Lipopolisacáridos/farmacología , Miofibroblastos/citología , Receptores Adrenérgicos alfa 2/química , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Transducción de Señal , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
J Environ Manage ; 287: 112355, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33740745

RESUMEN

In the sediment-water system of storm sewers (e.g., sediments, interstitial water, and the water column), the migration of nitrogen and its biological transformation with different dissolved oxygen conditions were investigated. Results showed that in an aerobic segment, γ-proteobacteria, α-proteobacteria, and nitrospira, which are aerobic, grew actively in water column and interstitial water through ammonification and nitrification. In anoxic segment, ammonification depended mainly on clostridia, whereas nitrification was inhibited. Thus, after 20 days, the concentration of NH4+-N in the aerobic segment became noticeably lower (5.97 mg/L) than that in the anoxic segment (18.09 mg/L). In sediments, the biological transformation of organic nitrogen in the anoxic environment was more complete, resulting in elevating amino acid nitrogen and NH4+-N in the anoxic segment compared to the aerobic segment. Furthermore, the concentration gradient of NH4+-N between interstitial water and water column in aerobic and anoxic segments, thereby causing NH4+-N to migrate from interstitial water to the water column. In the sediment-water system, the different forms of nitrogen changes were the common result of biological transformation and material migration.


Asunto(s)
Nitrógeno , Agua , Bacterias , Sedimentos Geológicos , Nitrificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA