Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2940-2948, 2023 Jun.
Artículo en Zh | MEDLINE | ID: mdl-37381954

RESUMEN

Ligustrum lucidum is a woody perennial plant of genus Ligustrum in family Oleaceae. Its dried fruit has high medicinal value. In this study, the authors evaluated the variability and species identification efficiency of three specific DAN barcodes(rbcL-accD, ycf1a, ycf1b) and four general DAN barcodes(matK, rbcL, trnH-psbA, ITS2) for a rapid and accurate molecular identification of Ligustrum species. The results revealed that matK, rbcL, trnH-psbA, ITS2 and ycf1a were inefficient for identifying the Ligustrum species, and a large number of insertions and deletions were observed in rbcL-accD sequence, which was thus unsuitable for development as specific barcode. The ycf1b-2 barcode had DNA barcoding gap and high success rate of PCR amplification and DNA sequencing, which was the most suitable DNA barcode for L. lucidum identification and achieved an accurate result. In addition, to optimize the DNA extraction experiment, the authors extracted and analyzed the DNA of the exocarp, mesocarp, endocarp and seed of L. lucidum fruit. It was found that seed was the most effective part for DNA extraction, where DNAs of high concentration and quality were obtained, meeting the needs of species identification. In this study, the experimental method for DNA extraction of L. lucidum was optimized, and the seed was determined as the optimal part for DNA extraction and ycf1b-2 was the specific DNA barcode for L. lucidum identification. This study laid a foundation for the market regulation of L. lucidum.


Asunto(s)
Ligustrum , Ligustrum/genética , Semillas , Frutas , Reacción en Cadena de la Polimerasa , Proyectos de Investigación
2.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1847-1856, 2022 Apr.
Artículo en Zh | MEDLINE | ID: mdl-35534254

RESUMEN

Ligustri Lucidi Fructus, the sun-dried mature fruit of Ligustrum lucidum, is cool, plain, sweet, and bitter, which can be used as both food and medicine, with the effects of improving vision, blacking hair, and tonifying liver and kidney. It takes effect slowly. However, little is known about the genetic information of the medicinal plant and it is still a challenge to distinguish Ligustrum species. In this study, the complete chloroplast genome of L. lucidum was obtained by genome skimming and then compared with that of five other Ligustrum species, which had been reported. This study aims to evaluate the interspecific variation of chloroplast genome within the genus and develop molecular markers for species identification of the genus. The result showed that the chloroplast genome of L. lucidum was 162 162 bp with a circular quadripartite structure of two single-copy regions separated by a pair of inverted repeats. The Ligustrum chloroplast genomes were conserved with small interspecific difference. Comparative analysis of six Ligustrum chloroplast genomes revealed three variable regions(rbcL-accD, ycf1a, and ycf1b), and ycf1a and ycf1b can be used as the species-specific DNA barcode for Ligustrum. Phylogeny analysis provided the best resolution of Ligustrum and supported that L. lucidum was sister to L. gracile. This study clarified the genetic diversity of L. lucidum from provenance, which can serve as a reference for further analysis of pharmacological differences and breeding of excellent varieties with stable drug effects.


Asunto(s)
Genoma del Cloroplasto , Ligustrum , Frutas , Ligustrum/química , Ligustrum/genética , Filogenia , Fitomejoramiento
3.
Yi Chuan ; 38(9): 831-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27644744

RESUMEN

In animal cells, inhibition of non-homologous end joining (NHEJ) pathway improves the efficiency of homologous recombination (HR)-mediated double-strand brakes (DSBs) repair. To improve the efficiency of HR in sheep embryo fibroblasts, the NHEJ key molecule DNA ligase 4 (Lig4) was suppressed by siRNA interference. Four pairs of siRNA targeting Lig4 were designed and chemically synthesized. These siRNA were electro-transferred into sheep embryo fibroblasts respectively. Compared with the control groups, two pairs of siRNA were identified to effectively inhibit the expression of sheep Lig4 gene by qRT-PCR and Western blotting. The plasmid rejoining assay was adopted for examining the efficiency of HR-mediated DSB repair. I-SceⅠ endonuclease linearized vector and siRNA were co-transfected into sheep embryo fibroblasts. Flow cytometry analysis of cells after transfection for 72 h showed that suppression of Lig4 using siRNAs increased the rejoining efficiency of HR vector by 3-4 times compared with the control groups. Therefore, enhanced HR vector rejoining frequency by instant inhabition of Lig4 gene provides theoretical basis for improving gene targeting efficiency of sheep embryo fibroblasts.


Asunto(s)
ADN Ligasas/genética , Fibroblastos/metabolismo , Recombinación Homóloga/genética , ARN Interferente Pequeño/genética , Reparación del ADN por Recombinación/genética , Ovinos/genética , Animales , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Marcación de Gen/métodos , Proteínas Nucleares/genética , Ovinos/metabolismo
4.
Eur J Med Chem ; 230: 114112, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35065411

RESUMEN

Hybridization of nitric oxide (NO) donors with known anti-cancer agents have been emerged as a strategy to achieve improved therapeutic effect and to overcome chemo-resistance in cancer therapy. In this study, furoxan moiety as an efficient NO donor was introduced to phenstatin, a microtubule-interfering agent (MIA), leading to the design and synthesis of a series of furoxan-based NO-releasing arylphenones derivatives. In biological evaluation, the synthesized compounds showed moderate to potent anti-tumor activities against several human cancer cell lines. Among them, compound 15h showed the most potent activities against both chemo-sensitive and resistant cancer cell lines with IC50 values ranging from 0.008 to 0.021 µM. Further mechanistic studies revealed that 15h worked as a bifunctional agent exhibiting both tubulin polymerized inhibition and NO-releasing activities, resulting in potent anti-angiogenesis, colony formation inhibition, cell cycle arrest and apoptosis induction effects. In the nude mice xenograft model, 15h significantly inhibited the paclitaxel-resistant tumor growth with low toxicity, demonstrating the promising potential for further preclinical evaluation as a therapeutic agent, particularly for the treatment of chemo-resistant cancers.


Asunto(s)
Antineoplásicos , Animales , Antineoplásicos/farmacología , Apoptosis , Benzofenonas , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Ratones Desnudos , Oxadiazoles , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA