Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926096

RESUMEN

The SOS response is induced upon DNA damage and the inhibition of Z ring formation by the product of the sulA gene, which is one of the LexA-regulated genes, allows time for repair of damaged DNA. On the other hand, severely DNA-damaged cells are eliminated from cell populations. Overexpression of sulA leads to cell lysis, suggesting SulA eliminates cells with unrepaired damaged DNA. Transcriptome analysis revealed that overexpression of sulA leads to up-regulation of numerous genes, including soxS. Deletion of soxS markedly reduced the extent of cell lysis by sulA overexpression and soxS overexpression alone led to cell lysis. Further experiments on the SoxS regulon suggested that LpxC is a main player downstream from SoxS. These findings suggested the SulA-dependent cell lysis (SDCL) cascade as follows: SulA→SoxS→LpxC. Other tests showed that the SDCL cascade pathway does not overlap with the apoptosis-like and mazEF cell death pathways.


Asunto(s)
Daño del ADN/fisiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Amidohidrolasas/metabolismo , Apoptosis/genética , Proteínas Bacterianas/metabolismo , División Celular/genética , Daño del ADN/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Genes Bacterianos/genética , Serina Endopeptidasas/metabolismo , Transactivadores/metabolismo
2.
Nucleic Acids Res ; 43(Database issue): D606-17, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25399415

RESUMEN

Comprehensive experimental resources, such as ORFeome clone libraries and deletion mutant collections, are fundamental tools for elucidation of gene function. Data sets by omics analysis using these resources provide key information for functional analysis, modeling and simulation both in individual and systematic approaches. With the long-term goal of complete understanding of a cell, we have over the past decade created a variety of clone and mutant sets for functional genomics studies of Escherichia coli K-12. We have made these experimental resources freely available to the academic community worldwide. Accordingly, these resources have now been used in numerous investigations of a multitude of cell processes. Quality control is extremely important for evaluating results generated by these resources. Because the annotation has been changed since 2005, which we originally used for the construction, we have updated these genomic resources accordingly. Here, we describe GenoBase (http://ecoli.naist.jp/GB/), which contains key information about comprehensive experimental resources of E. coli K-12, their quality control and several omics data sets generated using these resources.


Asunto(s)
Bases de Datos Genéticas , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Genes Bacterianos , Genoma Bacteriano , Internet , Anotación de Secuencia Molecular , Mutación
3.
Adv Exp Med Biol ; 883: 155-68, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26621467

RESUMEN

E. coli has been a critically important model research organism for more than 50 years, particularly in molecular biology. In 1997, the E. coli draft genome sequence was published. Post-genomic techniques and resources were then developed that allowed E. coli to become a model organism for systems biology. Progress made since publication of the E. coli genome sequence will be summarized.


Asunto(s)
Biología Computacional , Escherichia coli/genética , Biblioteca de Genes , Ensayos Analíticos de Alto Rendimiento
4.
Biophys J ; 106(1): 145-53, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24411246

RESUMEN

We investigated the mobility of the polar localized serine chemoreceptor, Tsr, labeled by the fluorescent protein Venus in the inner membrane of live Escherichia coli cells at observation rates up to 1000 Hz. A fraction (7%) of all Tsr molecules shows free diffusion over the entire cell surface with an average diffusion coefficient of 0.40 ± 0.01 µm(2) s(-1). The remaining molecules were found to be ultimately confined in compartments of size 290 ± 15 nm and showed restricted diffusion at an inner barrier found at 170 ± 10 nm. At the shortest length-scales (<170 nm), all Tsr molecules diffuse equally. Disruption of the cytoskeleton and rounding of the cells resulted in an increase in the mobile fraction of Tsr molecules and a fragmenting of the previously polar cluster of Tsr consistent with a curvature-based mechanism of Tsr cluster maintenance.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Citoesqueleto de Actina/metabolismo , Membrana Celular/ultraestructura , Difusión , Escherichia coli/ultraestructura , Microscopía Fluorescente
5.
BMC Microbiol ; 14: 171, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24964927

RESUMEN

BACKGROUND: Precise quantitative growth measurements and detection of small growth changes in high-throughput manner is essential for fundamental studies of bacterial cell. However, an inherent tradeoff for measurement quality in high-throughput methods sacrifices some measurement quality. A key challenge has been how to enhance measurement quality without sacrificing throughput. RESULTS: We developed a new high-throughput measurement system, termed Colony-live. Here we show that Colony-live provides accurate measurement of three growth values (lag time of growth (LTG), maximum growth rate (MGR), and saturation point growth (SPG)) by visualizing colony growth over time. By using a new normalization method for colony growth, Colony-live gives more precise and accurate growth values than the conventional method. We demonstrated the utility of Colony-live by measuring growth values for the entire Keio collection of Escherichia coli single-gene knockout mutants. By using Colony-live, we were able to identify subtle growth defects of single-gene knockout mutants that were undetectable by the conventional method quantified by fixed time-point camera imaging. Further, Colony-live can reveal genes that influence the length of the lag-phase and the saturation point of growth. CONCLUSIONS: Measurement quality is critical to achieving the resolution required to identify unique phenotypes among a diverse range of phenotypes. Sharing high-quality genome-wide datasets should benefit many researchers who are interested in specific gene functions or the architecture of cellular systems. Our Colony-live system provides a new powerful tool to accelerate accumulation of knowledge of microbial growth phenotypes.


Asunto(s)
Técnicas Bacteriológicas/métodos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/genética , Técnicas de Inactivación de Genes , Genética Microbiana/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Imagen Óptica/métodos
6.
J Bacteriol ; 195(9): 2039-49, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23457245

RESUMEN

We have performed a screening of hydroxyurea (HU)-sensitive mutants using a single-gene-deletion mutant collection in Escherichia coli K-12. HU inhibits ribonucleotide reductase (RNR), an enzyme that catalyzes the formation of deoxyribonucleotides. Unexpectedly, seven of the mutants lacked genes that are required for the incorporation of sulfur into a specific tRNA modification base, 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U), via persulfide relay. We found that the expression of RNR in the mutants was reduced to about one-third both in the absence and presence of HU, while sufficient deoxynucleoside triphosphate (dNTP) was maintained in the mutants in the absence of HU but a shortage occurred in the presence of HU. Trans-supply of an RNR R2 subunit rescued the HU sensitivity of these mutants. The mutants showed high intracellular ATP/ADP ratios, and overexpression of Hda, which catalyzes the conversion of DnaA-ATP to DnaA-ADP, rescued the HU sensitivity of the mutants, suggesting that DnaA-ATP represses RNR expression. The high intracellular ATP/ADP ratios were due to high respiration activity in the mutants. Our data suggested that intracellular redox was inclined toward the reduced state in these mutants, which may explain a change in RNR activity by reduction of the catalytically formed disulfide bond and high respiration activity by the NADH reducing potential. The relation between persulfide relay and intracellular redox is discussed.


Asunto(s)
Escherichia coli K12/metabolismo , ARN de Transferencia/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Escherichia coli K12/efectos de los fármacos , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroxiurea/farmacología , Mutación , Oxidación-Reducción , ARN de Transferencia/genética , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Tiouridina/análogos & derivados , Tiouridina/metabolismo
7.
J Bacteriol ; 193(14): 3618-23, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21602342

RESUMEN

Microcin C (McC), a natural antibacterial compound consisting of a heptapeptide attached to a modified adenosine, is actively taken up by the YejABEF transporter, after which it is processed by cellular aminopeptidases, releasing the nonhydrolyzable aminoacyl adenylate, an inhibitor of aspartyl-tRNA synthetase. McC analogues with variable length of the peptide moiety were synthesized and evaluated in order to characterize the substrate preferences of the YejABEF transporter. It was shown that a minimal peptide chain length of 6 amino acids and the presence of an N-terminal formyl-methionyl-arginyl sequence are required for transport.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Antibacterianos/metabolismo , Bacteriocinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Péptidos/química , Transportadoras de Casetes de Unión a ATP/genética , Antibacterianos/química , Bacteriocinas/química , Transporte Biológico , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Estructura Molecular , Péptidos/genética , Péptidos/metabolismo
8.
Mol Microbiol ; 77(6): 1367-79, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20624226

RESUMEN

CRISPR/Cas, bacterial and archaeal systems of interference with foreign genetic elements such as viruses or plasmids, consist of DNA loci called CRISPR cassettes (a set of variable spacers regularly separated by palindromic repeats) and associated cas genes. When a CRISPR spacer sequence exactly matches a sequence in a viral genome, the cell can become resistant to the virus. The CRISPR/Cas systems function through small RNAs originating from longer CRISPR cassette transcripts. While laboratory strains of Escherichia coli contain a functional CRISPR/Cas system (as judged by appearance of phage resistance at conditions of artificial co-overexpression of Cas genes and a CRISPR cassette engineered to target a λ-phage), no natural phage resistance due to CRISPR system function was observed in this best-studied organism and no E. coli CRISPR spacer matches sequences of well-studied E. coli phages. To better understand the apparently 'silent'E. coli CRISPR/Cas system, we systematically characterized processed transcripts from CRISPR cassettes. Using an engineered strain with genomically located spacer matching phage λ we show that endogenous levels of CRISPR cassette and cas genes expression allow only weak protection against infection with the phage. However, derepression of the CRISPR/Cas system by disruption of the hns gene leads to high level of protection.


Asunto(s)
ADN Bacteriano/genética , Escherichia coli/genética , Secuencias Invertidas Repetidas , Transcripción Genética , Regiones no Traducidas 5' , Bacteriófago lambda/fisiología , Secuencia de Bases , ADN Intergénico/genética , Escherichia coli/inmunología , Escherichia coli/virología , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Procesamiento Postranscripcional del ARN
9.
BMC Genomics ; 11: 470, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20701780

RESUMEN

BACKGROUND: Systems biology and functional genomics require genome-wide datasets and resources. Complete sets of cloned open reading frames (ORFs) have been made for about a dozen bacterial species and allow researchers to express and study complete proteomes in a high-throughput fashion. RESULTS: We have constructed an open reading frame (ORFeome) collection of 3974 or 94% of the known Escherichia coli K-12 ORFs in Gateway entry vector pENTR/Zeo. The collection has been used for protein expression and protein interaction studies. For example, we have compared interactions among YgjD, YjeE and YeaZ proteins in E. coli, Streptococcus pneumoniae, and Staphylococcus aureus. We also compare this ORFeome with other Gateway-compatible bacterial ORFeomes and show its utility for comparative functional genomics. CONCLUSIONS: The E. coli ORFeome provides a useful resource for functional genomics and other areas of protein research in a highly flexible format. Our comparison with other ORFeomes makes comparative analyses straighforward and facilitates direct comparisons of many proteins across many genomes.


Asunto(s)
Escherichia coli K12/genética , Sistemas de Lectura Abierta , Proteínas Bacterianas/metabolismo , Genoma Bacteriano , Análisis de Secuencia de ADN , Staphylococcus aureus/genética , Streptococcus pneumoniae/genética
10.
Mol Microbiol ; 73(4): 571-85, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19650773

RESUMEN

Only two new genes (fkpA and lepB) have been identified to be required for colicin cytotoxicity in the last 25 years. Genome-wide screening using the 'Keio collection' to test sensitivity to colicins (col) A, B, D, E1, E2, E3, E7 and N from groups A and B, allowed identification of novel genes affecting cytotoxicity and provided new information on mechanisms of action. The requirement of lipopolysaccharide for colN cytotoxicity resides specifically in the lipopolysaccharide inner-core and first glucose. ColA cytotoxicity is dependent on gmhB and rffT genes, which function in the biosynthesis of lipopolysaccharide and enterobacterial common antigen. Of the tol genes that function in the cytoplasmic membrane translocon, colE1 requires tolA and tolR but not tolQ for activity. Peptidoglycan-associated lipoprotein, which interacts with the Tol network, is not required for cytotoxicity of group A colicins. Except for TolQRA, no cytoplasmic membrane protein is essential for cytotoxicity of group A colicins, implying that TolQRA provides the sole pathway for their insertion into/through the cytoplasmic membrane. The periplasmic protease that cleaves between the receptor and catalytic domains of colE7 was not identified, implying either that the responsible gene is essential for cell viability, or that more than one gene product has the necessary proteolysis function.


Asunto(s)
Colicinas/metabolismo , Escherichia coli/genética , Genoma Bacteriano , Colicinas/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Técnicas de Inactivación de Genes , Biblioteca de Genes , Genes Bacterianos , Prueba de Complementación Genética
11.
FEMS Microbiol Rev ; 32(3): 461-73, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18248418

RESUMEN

Bacterial pathogens regulate virulence factor gene expression coordinately in response to environmental stimuli, including nutrient starvation. The phosphate (Pho) regulon plays a key role in phosphate homeostasis. It is controlled by the PhoR/PhoB two-component regulatory system. PhoR is an integral membrane signaling histidine kinase that, through an interaction with the ABC-type phosphate-specific transport (Pst) system and a protein called PhoU, somehow senses environmental inorganic phosphate (P(i)) levels. Under conditions of P(i) limitation (or in the absence of a Pst component or PhoU), PhoR activates its partner response regulator PhoB by phosphorylation, which, in turn, up- or down-regulates target genes. Single-cell profiling of PhoB activation has shown recently that Pho regulon gene expression exhibits a stochastic, "all-or-none" behavior. Recent studies have also shown that the Pho regulon plays a role in the virulence of several bacteria. Here, we present a comprehensive overview of the role of the Pho regulon in bacterial virulence. The Pho regulon is clearly not a simple regulatory circuit for controlling phosphate homeostasis; it is part of a complex network important for both bacterial virulence and stress response.


Asunto(s)
Bacterias/patogenicidad , Fenómenos Fisiológicos Bacterianos , Regulación Bacteriana de la Expresión Génica , Homeostasis , Fosfatos/metabolismo , Regulón , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Virulencia
12.
Analyst ; 134(5): 838-41, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19381372

RESUMEN

Desorption electrospray ionization mass spectrometry (DESI-MS) of culture of the bacterium Bacillus subtilis as a biofilm growing on agar nutrient gives simple, high quality mass spectra dominated in both the positive and negative ion modes by signals due to the cyclic lipopeptide, Surfactin(C15). This in vivo experiment, performed by direct analysis of untreated microorganism samples under ambient conditions, allows rapid identification of this microorganism and the antibiotics that it produces. The result is suggestive of the capabilities of DESI-MS for in vivo microorganism characterization in general and for monitoring fermentation processes for the production of antibiotics and other biochemicals.


Asunto(s)
Bacillus subtilis/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray/métodos , Técnicas Bacteriológicas , Biopelículas , Lipopéptidos/química , Péptidos Cíclicos/química , Conformación Proteica
13.
J Bacteriol ; 190(7): 2607-10, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18223070

RESUMEN

The heptapeptide-nucleotide microcin C (McC) targets aspartyl-tRNA synthetase. Upon its entry into a susceptible cell, McC is processed to release a nonhydrolyzable aspartyl-adenylate that inhibits aspartyl-tRNA synthetase, leading to the cessation of translation and cell growth. Here, we surveyed Escherichia coli cells with singly, doubly, and triply disrupted broad-specificity peptidase genes to show that any of three nonspecific oligopeptidases (PepA, PepB, or PepN) can effectively process McC. We also show that the rate-limiting step of McC processing in vitro is deformylation of the first methionine residue of McC.


Asunto(s)
Bacteriocinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Péptido Hidrolasas/metabolismo , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Aspartato-ARNt Ligasa/antagonistas & inhibidores , Aspartato-ARNt Ligasa/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriocinas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Espectrometría de Masas , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Estructura Molecular , Mutación , Péptido Hidrolasas/genética , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
14.
J Mol Biol ; 366(2): 626-41, 2007 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-17182055

RESUMEN

The PhoR/PhoB two-component system is a key regulatory protein network enabling Escherichia coli to respond to inorganic phosphate (Pi) starvation conditions by turning on Pho regulon genes for more efficient Pi uptake and use of alternative phosphorus sources. Under environmental Pi depletion, the response regulator (RR) component, PhoB, is phosphorylated at the receiver domain (RD), a process that requires Mg(2+) bound at the active site. Phosphorylation of the RD relieves the inhibition of the PhoB effector domain (ED), a DNA-binding region that binds to Pho regulon promoters to activate transcription. The molecular details of the activation are proposed to involve dimerization of the RD and a conformational change in the RD detected by the ED. The structure of the PhoB RD shows a symmetrical interaction involving alpha1, loop beta5alpha5 and N terminus of alpha5 elements, also seen in the complex of PhoB RD with Mg(2+), in which helix alpha4 highly increases its flexibility. PhoB RD in complex with Mg(2+) and BeF(3) (an emulator of the phosphate moiety) undergoes a dramatic conformational change on helix alpha4 and shows another interaction involving alpha4, beta5 and alpha5 segments. We have selected a series of constitutively active PhoB mutants (PhoB(CA)) that are able to turn on the Pho regulon promoters in the absence phosphorylation and, as they cannot be inactivated, should therefore mimic the active RD state of PhoB and its functional oligomerisation. We have analysed the PhoB(CA) RD crystal structures of two such mutants, Asp53Ala/Tyr102Cys and Asp10Ala/Asp53Glu. Interestingly, both mutants reproduce the homodimeric arrangement through the symmetric interface encountered in the unbound and magnesium-bound wild-type PhoB RD structures. Besides, the mutant RD structures show a modified active site organization as well as changes at helix alpha4 that correlate with repositioning of surrounding residues, like the active-site events indicator Trp54, putatively redifining the interaction with the ED in the full-length protein.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Mutación , Estructura Terciaria de Proteína , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Escherichia coli/genética , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Relación Estructura-Actividad
15.
Methods Mol Biol ; 416: 183-94, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18392968

RESUMEN

The increasing genome sequence data of microorganisms has provided the basis for comprehensive understanding of organisms at the molecular level. Besides sequence data, a large number of experimental and computational resources are required for genome-scale analyses. Escherichia coli K-12 has been one of the best characterized organisms in molecular biology. Recently, the whole-genome sequences of two closely related E. coli K-12 strains, MG1655 (1) and W3110 (2), were compared and confirmed by resequencing selected regions from both strains (2). The availability of highly accurate E. coli K-12 genomes provided an impetus for the cooperative reannotation of both MG1655 and W3110 (3). A set of precisely defined, single-gene knockout mutants of all nonessential genes in E. coli K-12 was constructed based on the recent accurate genome sequence data ([4] and Chapter 11). These mutants were designed to create in-frame (nonpolar) deletions upon elimination of the resistance cassette. These mutants have provided new key information on E. coli biology. First, the vast majority of the 3985 genes that were independently disrupted at least twice are probably nonessential, at least under the conditions of selection. Second, the 303 genes that we repeatedly failed to disrupt are candidates for E. coli essential genes. Lastly, phenotypic effects of all these mutations in the uniform genetic background of E. coli BW25113 were assessed by profiling mutants' growth yields on rich and minimal media (4). These mutants should provide not only a basic resource for systematic functional genomics but also an experimental data source for systems biology applications. The mutants can serve as fundamental tools for a number of reverse genetics approaches, permitting analysis of the consequences of the complete loss of gene function, in contrast with forward genetics approaches in which mutant phenotypes are associated with a corresponding gene or genes.


Asunto(s)
Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Organismos Modificados Genéticamente , Congresos como Asunto , Eliminación de Gen , Terminología como Asunto
16.
Nat Biotechnol ; 23(12): 1509-15, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16333295

RESUMEN

Most of the published quantitative models in biology are lost for the community because they are either not made available or they are insufficiently characterized to allow them to be reused. The lack of a standard description format, lack of stringent reviewing and authors' carelessness are the main causes for incomplete model descriptions. With today's increased interest in detailed biochemical models, it is necessary to define a minimum quality standard for the encoding of those models. We propose a set of rules for curating quantitative models of biological systems. These rules define procedures for encoding and annotating models represented in machine-readable form. We believe their application will enable users to (i) have confidence that curated models are an accurate reflection of their associated reference descriptions, (ii) search collections of curated models with precision, (iii) quickly identify the biological phenomena that a given curated model or model constituent represents and (iv) facilitate model reuse and composition into large subcellular models.


Asunto(s)
Bioquímica/métodos , Bases de Datos Factuales , Documentación/métodos , Documentación/normas , Almacenamiento y Recuperación de la Información/métodos , Modelos Biológicos , Terminología como Asunto , Bioquímica/normas , Fenómenos Fisiológicos Celulares , Guías como Asunto , Difusión de la Información/métodos , Almacenamiento y Recuperación de la Información/normas
17.
Nucleic Acids Res ; 34(1): 1-9, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16397293

RESUMEN

The goal of this group project has been to coordinate and bring up-to-date information on all genes of Escherichia coli K-12. Annotation of the genome of an organism entails identification of genes, the boundaries of genes in terms of precise start and end sites, and description of the gene products. Known and predicted functions were assigned to each gene product on the basis of experimental evidence or sequence analysis. Since both kinds of evidence are constantly expanding, no annotation is complete at any moment in time. This is a snapshot analysis based on the most recent genome sequences of two E.coli K-12 bacteria. An accurate and up-to-date description of E.coli K-12 genes is of particular importance to the scientific community because experimentally determined properties of its gene products provide fundamental information for annotation of innumerable genes of other organisms. Availability of the complete genome sequence of two K-12 strains allows comparison of their genotypes and mutant status of alleles.


Asunto(s)
Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Congresos como Asunto , Conducta Cooperativa , Genómica , Terminología como Asunto
18.
PLoS One ; 13(5): e0195887, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29771911

RESUMEN

The spatial location of proteins in living cells can be critical for their function. For example, the E. coli chemotaxis machinery is localized to the cell poles. Here we describe the polar localization of the serine chemoreceptor Tsr using a strain synthesizing a fluorescent Tsr-Venus fusion at a low level from a single-copy chromosomal construct. Using photobleaching and imaging during recovery by new synthesis, we observed distinct asymmetry between a bright (old) pole and a dim (new) pole. The old pole was shown to be a more stable cluster and to recover after photobleaching faster, which is consistent with the hypothesis that newly synthesized Tsr proteins are inserted directly at or near the old pole. The new pole was shown to be a less stable cluster and to exchange proteins freely with highly mobile Tsr-Venus proteins diffusing in the membrane. We propose that the new pole arises from molecules escaping from the old pole and diffusing to the new pole where a more stable cluster forms over time. Our localization imaging data support a model in which a nascent new pole forms prior to stable cluster formation.


Asunto(s)
Escherichia coli/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Imagen Molecular , Transporte de Proteínas
19.
J Bacteriol ; 189(24): 8772-85, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17766423

RESUMEN

Transcription elongation factor GreA induces nucleolytic activity of bacterial RNA polymerase (RNAP). In vitro, transcript cleavage by GreA contributes to transcription efficiency by (i) suppressing pauses and arrests, (ii) stimulating RNAP promoter escape, and (iii) enhancing transcription fidelity. However, it is unclear which of these functions is (are) most relevant in vivo. By comparing global gene expression profiles of Escherichia coli strains lacking Gre factors and strains expressing either the wild type (wt) or a functionally inactive GreA mutant, we identified genes that are potential targets of GreA action. Data analysis revealed that in the presence of chromosomally expressed GreA, 19 genes are upregulated; an additional 105 genes are activated upon overexpression of the wt but not the mutant GreA. Primer extension reactions with selected transcription units confirmed the gene array data. The most prominent stimulatory effect (threefold to about sixfold) of GreA was observed for genes of ribosomal protein operons and the tna operon, suggesting that transcript cleavage by GreA contributes to optimal expression levels of these genes in vivo. In vitro transcription assays indicated that the stimulatory effect of GreA upon the transcription of these genes is mostly due to increased RNAP recycling due to facilitated promoter escape. We propose that transcript cleavage during early stages of initiation is thus the main in vivo function of GreA. Surprisingly, the presence of the wt GreA also led to the decreased transcription of many genes. The mechanism of this effect is unknown and may be indirect.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/fisiología , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Regiones Promotoras Genéticas , Factores de Transcripción/fisiología , Transcripción Genética/fisiología , Sistemas de Transporte de Aminoácidos/biosíntesis , Sistemas de Transporte de Aminoácidos/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Ribosómicas/biosíntesis , Proteínas Ribosómicas/genética , Factores de Transcripción/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética/genética
20.
Mol Syst Biol ; 2: 2006.0007, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16738553

RESUMEN

With the goal of solving the whole-cell problem with Escherichia coli K-12 as a model cell, highly accurate genomes were determined for two closely related K-12 strains, MG1655 and W3110. Completion of the W3110 genome and comparison with the MG1655 genome revealed differences at 267 sites, including 251 sites with short, mostly single-nucleotide, insertions or deletions (indels) or base substitutions (totaling 358 nucleotides), in addition to 13 sites with an insertion sequence element or defective prophage in only one strain and two sites for the W3110 inversion. Direct DNA sequencing of PCR products for the 251 regions with short indel and base disparities revealed that only eight sites are true differences. The other 243 discrepancies were due to errors in the original MG1655 sequence, including 79 frameshifts, one amino-acid residue deletion, five amino-acid residue insertions, 73 missense, and 17 silent changes within coding regions. Errors in the original MG1655 sequence (<1 per 13,000 bases) were mostly within portions sequenced with out-dated technology based on radioactive chemistry.


Asunto(s)
Secuencia de Bases , Escherichia coli/genética , Genoma Bacteriano , Mutación , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA