Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(6): 1368-1382.e23, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29195076

RESUMEN

Blood platelets are critical for hemostasis and thrombosis and play diverse roles during immune responses. Despite these versatile tasks in mammalian biology, their skills on a cellular level are deemed limited, mainly consisting in rolling, adhesion, and aggregate formation. Here, we identify an unappreciated asset of platelets and show that adherent platelets use adhesion receptors to mechanically probe the adhesive substrate in their local microenvironment. When actomyosin-dependent traction forces overcome substrate resistance, platelets migrate and pile up the adhesive substrate together with any bound particulate material. They use this ability to act as cellular scavengers, scanning the vascular surface for potential invaders and collecting deposited bacteria. Microbe collection by migrating platelets boosts the activity of professional phagocytes, exacerbating inflammatory tissue injury in sepsis. This assigns platelets a central role in innate immune responses and identifies them as potential targets to dampen inflammatory tissue damage in clinical scenarios of severe systemic infection.


Asunto(s)
Infecciones Bacterianas/inmunología , Plaquetas/inmunología , Animales , Bacterias/clasificación , Plaquetas/citología , Vasos Sanguíneos/lesiones , Vasos Sanguíneos/patología , Calcio/metabolismo , Movimiento Celular , Polaridad Celular , Humanos , Inflamación/inmunología , Integrinas/metabolismo , Ratones , Miosinas/metabolismo , Neutrófilos/citología
2.
J Cell Sci ; 134(5)2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33380490

RESUMEN

Borrelia burgdorferi is the causative agent of Lyme disease, a multisystemic disorder affecting primarily skin, joints and nervous system. Successful internalization and intracellular processing of borreliae by immune cells, like macrophages, is decisive for the outcome of a respective infection. Here, we use, for the first time, focused ion beam scanning electron microscopy tomography (FIB-SEM tomography) to visualize the interaction of borreliae with primary human macrophages with high resolution. We report that interaction between macrophages and the elongated and highly motile borreliae can lead to formation of membrane tunnels that extend deeper into the host cytoplasm than the actual phagosome, most probably as a result of partial extrication of captured borreliae. We also show that membrane tubulation at borreliae-containing phagosomes, a process suggested earlier as a mechanism leading to phagosome compaction but hard to visualize in live-cell imaging, is apparently a frequent phenomenon. Finally, we demonstrate that the endoplasmic reticulum (ER) forms multiple STIM1-positive contact sites with both membrane tunnels and phagosome tubulations, confirming the important role of the ER during uptake and intracellular processing of borreliae.


Asunto(s)
Borrelia burgdorferi , Borrelia , Enfermedad de Lyme , Humanos , Macrófagos , Fagosomas
3.
Mol Hum Reprod ; 28(10)2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-35944223

RESUMEN

In the ovary, proliferation and differentiation of granulosa cells (GCs) drive follicular growth. Our immunohistochemical study in a non-human primate, the Rhesus monkey, showed that the mitochondrial activity marker protein cytochrome c oxidase subunit 4 (COX4) increases in GCs in parallel to follicle size, and furthermore, its intracellular localization changes. This suggested that there is mitochondrial biogenesis and trafficking, and implicates the actions of gonadotropins, which regulate follicular growth and ovulation. Human KGN cells, i.e. granulosa tumour cells, were therefore used to study these possibilities. To robustly elevate cAMP, and thereby mimic the actions of gonadotropins, we used forskolin (FSK). FSK increased the cell size and the amount of mitochondrial DNA of KGN cells within 24 h. As revealed by MitoTracker™ experiments and ultrastructural 3D reconstruction, FSK treatment induced the formation of elaborate mitochondrial networks. H89, a protein kinase A (PKA) inhibitor, reduced the network formation. A proteomic analysis indicated that FSK elevated the levels of regulators of the cytoskeleton, among others (data available via ProteomeXchange with identifier PXD032160). The steroidogenic enzyme CYP11A1 (Cytochrome P450 Family 11 Subfamily A Member 1), located in mitochondria, was more than 3-fold increased by FSK, implying that the cAMP/PKA-associated structural changes occur in parallel with the acquisition of steroidogenic competence of mitochondria in KGN cells. In summary, the observations show increases in mitochondria and suggest intracellular trafficking of mitochondria in GCs during follicular growth, and indicate that they may partially be under the control of gonadotropins and cAMP. In line with this, increased cAMP in KGN cells profoundly affected mitochondrial dynamics in a PKA-dependent manner and implicated cytoskeletal changes.


Asunto(s)
Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Complejo IV de Transporte de Electrones , Animales , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Colforsina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , ADN Mitocondrial , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Gonadotropinas/metabolismo , Gonadotropinas/farmacología , Células de la Granulosa/metabolismo , Mitocondrias/metabolismo , Proteómica
4.
Artículo en Inglés | MEDLINE | ID: mdl-36018778

RESUMEN

The order Solirubrobacterales is a deep-branching lineage within the phylum Actinomycetota. Most representatives have been isolated from terrestrial environments. A strain isolated from a grassland soil was found to be affiliated with this order and therefore characterized by a polyphasic approach. Cells of strain 0166_1T are Gram-positive, short rods, non-motile, non-spore-forming and divide by binary fission. A surface layer with protrusions covers the majority of the cells. Strain 0166_1T grows optimally around neutral to slightly alkaline pH (pH 7.1-7.9) and at temperatures between 24-36 °C in SSE/HD 1 : 10 medium. It grows optimally with 0-0.5% NaCl (w/v) but can withstand concentrations up to 5 %. The major fatty acids are C18 : 1 ω9c, C16 : 1 ω7c, C17 : 0 cyclo ω7c, C18 : 1 ω7c methyl and C19 : 0 cyclo ω9c. The major polar lipids are diphosphatidylglycerol, two unidentified phospholipids and one unidentified glycolipid. MK-7(H4) and MK-7(H2) are the predominant respiratory quinones. meso-2,6-Diaminopimelic acid is the diagnostic diamino acid in the cell-wall peptidoglycan. The G+C content for strain 0166_1T is 72.8 mol%. 16S rRNA gene sequence analysis indicated that this bacterium was related to Conexibacter arvalis KV-962T and Conexibacter stalactiti YC2-25T with 95.5 and 95.2 % sequence similarity, respectively. Based on the phenotypic, genomic and phylogenetic data, we propose the novel species Capillimicrobium parvum sp. nov. (type strain 0166_1T=DSM 104329T=LMG 29999T=CECT 9240T) of the novel genus Capillimicrobium gen. nov. within the novel family Capillimicrobiaceae fam. nov.


Asunto(s)
Pradera , Suelo , Bacterias , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
5.
BMC Biol ; 19(1): 193, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493257

RESUMEN

BACKGROUND: The presence of mitochondria is a distinguishing feature between prokaryotic and eukaryotic cells. It is currently accepted that the evolutionary origin of mitochondria coincided with the formation of eukaryotes and from that point control of mitochondrial inheritance was required. Yet, the way the mitochondrial presence has been maintained throughout the eukaryotic cell cycle remains a matter of study. Eukaryotes control mitochondrial inheritance mainly due to the presence of the genetic component; still only little is known about the segregation of mitochondria to daughter cells during cell division. Additionally, anaerobic eukaryotic microbes evolved a variety of genomeless mitochondria-related organelles (MROs), which could be theoretically assembled de novo, providing a distinct mechanistic basis for maintenance of stable mitochondrial numbers. Here, we approach this problem by studying the structure and inheritance of the protist Giardia intestinalis MROs known as mitosomes. RESULTS: We combined 2D stimulated emission depletion (STED) microscopy and focused ion beam scanning electron microscopy (FIB/SEM) to show that mitosomes exhibit internal segmentation and conserved asymmetric structure. From a total of about forty mitosomes, a small, privileged population is harnessed to the flagellar apparatus, and their life cycle is coordinated with the maturation cycle of G. intestinalis flagella. The orchestration of mitosomal inheritance with the flagellar maturation cycle is mediated by a microtubular connecting fiber, which physically links the privileged mitosomes to both axonemes of the oldest flagella pair and guarantees faithful segregation of the mitosomes into the daughter cells. CONCLUSION: Inheritance of privileged Giardia mitosomes is coupled to the flagellar maturation cycle. We propose that the flagellar system controls segregation of mitochondrial organelles also in other members of this supergroup (Metamonada) of eukaryotes and perhaps reflects the original strategy of early eukaryotic cells to maintain this key organelle before mitochondrial fusion-fission dynamics cycle as observed in Metazoa was established.


Asunto(s)
Giardia lamblia , Bases de Datos Genéticas , Giardia lamblia/genética , Mitocondrias/genética , Dinámicas Mitocondriales , Orgánulos
6.
Development ; 145(21)2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404777

RESUMEN

The trans-Golgi-network (TGN) has essential housekeeping functions in secretion, endocytosis and protein sorting, but also more specialized functions in plant development. How the robustness of basal TGN function is ensured while specialized functions are differentially regulated is poorly understood. Here, we investigate two key regulators of TGN structure and function, ECHIDNA and the Transport Protein Particle II (TRAPPII) tethering complex. An analysis of physical, network and genetic interactions suggests that two network communities are implicated in TGN function and that ECHIDNA and TRAPPII belong to distinct yet overlapping pathways. Whereas ECHIDNA and TRAPPII colocalized at the TGN in interphase cells, their localization diverged in dividing cells. Moreover, ECHIDNA and TRAPPII localization patterns were mutually independent. TGN structure, endocytosis and sorting decisions were differentially impacted in echidna and trappii mutants. Our analyses point to a partitioning of specialized TGN functions, with ECHIDNA being required for cell elongation and TRAPPII for cytokinesis. Two independent pathways able to compensate for each other might contribute to the robustness of TGN housekeeping functions and to the responsiveness and fine tuning of its specialized functions.


Asunto(s)
Arabidopsis/metabolismo , Transducción de Señal , Red trans-Golgi/metabolismo , Arabidopsis/citología , Arabidopsis/embriología , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biomarcadores/metabolismo , Membrana Celular/metabolismo , Citocinesis , Endocitosis , Epistasis Genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocótilo/metabolismo , Hipocótilo/ultraestructura , Mutación/genética , Raíces de Plantas/metabolismo , Transporte de Proteínas , Red trans-Golgi/ultraestructura
7.
Artículo en Inglés | MEDLINE | ID: mdl-33433313

RESUMEN

Members of the metabolically diverse order Nitrosomonadales inhabit a wide range of environments. Two strains affiliated with this order were isolated from soils in Germany and characterized by a polyphasic approach. Cells of strains 0125_3T and Swamp67T are Gram-negative rods, non-motile, non-spore-forming, non-capsulated and divide by binary fission. They tested catalase-negative, but positive for cytochrome c-oxidase. Both strains form small white colonies on agar plates and grow aerobically and chemoorganotrophically on SSE/HD 1 : 10 medium, preferably utilizing organic acids and proteinaceous substrates. Strains 0125_3T and Swamp67T are mesophilic and grow optimally without NaCl addition at slightly alkaline conditions. Major fatty acids are C16 : 1 ω7c, C16 : 0 and C14 : 0. The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidyglycerol. The predominant respiratory quinone is Q-8. The G+C content for 0125_3T and Swamp67T was 67 and 66.1 %, respectively. The 16S rRNA gene analysis indicated that the closest relatives (<91 % sequence similarity) of strain 0125_3T were Nitrosospira multiformis ATCC 25196T, Methyloversatilis universalis FAM5T and Denitratisoma oestradiolicum AcBE2-1T, while Nitrosospira multiformis ATCC 25196T, Nitrosospira tenuis Nv1T and Nitrosospira lacus APG3T were closest to strain Swamp67T. The two novel strains shared 97.4 % 16S rRNA gene sequence similarity with one another and show low average nucleotide identity of their genomes (83.8 %). Based on the phenotypic, chemotaxonomic, genomic and phylogenetic analysis, we propose the two novel species Usitatibacter rugosus sp. nov (type strain 0125_3T=DSM 104443T=LMG 29998T=CECT 9241T) and Usitatibacter palustris sp. nov. (type strain Swamp67T=DSM 104440T=LMG 29997T=CECT 9242T) of the novel genus Usitatibacter gen. nov., within the novel family Usitatibacteraceae fam. nov.


Asunto(s)
Betaproteobacteria/clasificación , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , Betaproteobacteria/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Alemania , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
8.
New Phytol ; 225(4): 1715-1731, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31596965

RESUMEN

Arabidopsis thaliana contains 13 fibrillins (FBNs), which are all localized to chloroplasts. FBN1 and FBN2 are involved in photoprotection of photosystem II, and FBN4 and FBN5 are thought to be involved in plastoquinone transport and biosynthesis, respectively. The functions of the other FBNs remain largely unknown. To gain insight into the function of FBN6, we performed coexpression and Western analyses, conducted fluorescence and transmission electron microscopy, stained reactive oxygen species (ROS), measured photosynthetic parameters and glutathione levels, and applied transcriptomics and metabolomics. Using coexpression analyses, FBN6 was identified as a photosynthesis-associated gene. FBN6 is localized to thylakoid and envelope membranes, and its knockout results in stunted plants. The delayed-growth phenotype cannot be attributed to altered basic photosynthesis parameters or a reduced CO2 assimilation rate. Under moderate light stress, primary leaves of fbn6 plants begin to bleach and contain enlarged plastoglobules. RNA sequencing and metabolomics analyses point to an alteration in sulfate reduction in fbn6. Indeed, glutathione content is higher in fbn6, which in turn confers cadmium tolerance of fbn6 seedlings. We conclude that loss of FBN6 leads to perturbation of ROS homeostasis. FBN6 enables plants to cope with moderate light stress and affects cadmium tolerance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Fibrilinas/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Aclimatación/genética , Aclimatación/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cadmio/toxicidad , Proteínas de Cloroplastos/genética , Fibrilinas/genética , Homeostasis , Luz , Fotosíntesis/fisiología , Transporte de Proteínas , Estrés Fisiológico/efectos de los fármacos , Sulfatos/metabolismo , Tilacoides/fisiología
9.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228190

RESUMEN

Low temperature stress has a severe impact on the distribution, physiology, and survival of plants in their natural habitats. While numerous studies have focused on the physiological and molecular adjustments to low temperatures, this study provides evidence that cold induced physiological responses coincide with distinct ultrastructural alterations. Three plants from different evolutionary levels and habitats were investigated: The freshwater alga Micrasterias denticulata, the aquatic plant Lemna sp., and the nival plant Ranunculus glacialis. Ultrastructural alterations during low temperature stress were determined by the employment of 2-D transmission electron microscopy and 3-D reconstructions from focused ion beam-scanning electron microscopic series. With decreasing temperatures, increasing numbers of organelle contacts and particularly the fusion of mitochondria to 3-dimensional networks were observed. We assume that the increase or at least maintenance of respiration during low temperature stress is likely to be based on these mitochondrial interconnections. Moreover, it is shown that autophagy and degeneration processes accompany freezing stress in Lemna and R. glacialis. This might be an essential mechanism to recycle damaged cytoplasmic constituents to maintain the cellular metabolism during freezing stress.


Asunto(s)
Araceae/fisiología , Autofagia/fisiología , Cloroplastos/fisiología , Micrasterias/fisiología , Mitocondrias/fisiología , Ranunculus/fisiología , Organismos Acuáticos , Araceae/ultraestructura , Respiración de la Célula/fisiología , Cloroplastos/ultraestructura , Frío , Respuesta al Choque por Frío , Retículo Endoplásmico/fisiología , Retículo Endoplásmico/ultraestructura , Micrasterias/ultraestructura , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Peroxisomas/fisiología , Peroxisomas/ultraestructura , Fotosíntesis/fisiología , Células Vegetales/fisiología , Células Vegetales/ultraestructura , Ranunculus/ultraestructura
10.
Glia ; 67(5): 985-998, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30667091

RESUMEN

The investigation of amyloid precursor protein (APP) has been mainly confined to its neuronal functions, whereas very little is known about its physiological role in astrocytes. Astrocytes exhibit a particular morphology with slender extensions protruding from somata and primary branches. Along these fine extensions, spontaneous calcium transients occur in spatially restricted microdomains. Within these microdomains mitochondria are responsible for local energy supply and Ca2+ buffering. Using two-photon in vivo Ca2+ imaging, we report a significant decrease in the density of active microdomains, frequency of spontaneous Ca2+ transients and slower Ca2+ kinetics in mice lacking APP. Mechanistically, these changes could be potentially linked to mitochondrial malfunction as our in vivo and in vitro data revealed severe, APP-dependent structural mitochondrial fragmentation in astrocytes. Functionally, such mitochondria exhibited prolonged kinetics and morphology dependent signal size of ATP-induced Ca2+ transients. Our results highlight a prominent role of APP in the modulation of Ca2+ activity in astrocytic microdomains whose precise functioning is crucial for the reinforcement and modulation of synaptic function. This study provides novel insights in APP physiological functions which are important for the understanding of the effects of drugs validated in Alzheimer's disease treatment that affect the function of APP.


Asunto(s)
Precursor de Proteína beta-Amiloide/deficiencia , Astrocitos/ultraestructura , Encéfalo/citología , Calcio/metabolismo , Microdominios de Membrana/metabolismo , Mitocondrias/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/ultraestructura , Transducción Genética , Transfección
11.
Plant Physiol ; 176(3): 2351-2364, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29374108

RESUMEN

The thylakoid membrane system of higher plant chloroplasts consists of interconnected subdomains of appressed and nonappressed membrane bilayers, known as grana and stroma lamellae, respectively. CURVATURE THYLAKOID1 (CURT1) protein complexes mediate the shape of grana stacks in a dosage-dependent manner and facilitate membrane curvature at the grana margins, the interface between grana and stroma lamellae. Although grana stacks are highly conserved among land plants, the functional relevance of grana stacking remains unclear. Here, we show that inhibiting CURT1-mediated alteration of thylakoid ultrastructure in Arabidopsis (Arabidopsis thaliana) reduces photosynthetic efficiency and plant fitness under adverse, controlled, and natural light conditions. Plants that lack CURT1 show less adjustment of grana diameter, which compromises regulatory mechanisms like the photosystem II repair cycle and state transitions. Interestingly, CURT1A suffices to induce thylakoid membrane curvature in planta and thylakoid hyperbending in plants overexpressing CURT1A. We suggest that CURT1 oligomerization is regulated at the posttranslational level in a light-dependent fashion and that CURT1-mediated thylakoid plasticity plays an important role in fine-tuning photosynthesis and plant fitness during challenging growth conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Cloroplastos/metabolismo , Proteínas de la Membrana/metabolismo , Fotosíntesis/fisiología , Tilacoides/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Proteínas de Cloroplastos/genética , Luz , Proteínas de la Membrana/genética , Mutación , Procesamiento Proteico-Postraduccional , Semillas/fisiología
12.
J Bacteriol ; 200(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29555694

RESUMEN

Many bacteria use extracellular signaling molecules to coordinate group behavior, a process referred to as quorum sensing (QS). However, some QS molecules are hydrophobic in character and are probably unable to diffuse across the bacterial cell envelope. How these molecules are disseminated between bacterial cells within a population is not yet fully understood. Here, we show that the marine pathogen Vibrio harveyi packages the hydrophobic QS molecule CAI-1, a long-chain amino ketone, into outer membrane vesicles. Electron micrographs indicate that outer membrane vesicles of variable size are predominantly produced and released into the surroundings during the stationary phase of V. harveyi, which correlates with the timing of CAI-1-dependent signaling. The large vesicles (diameter, <55 nm) can trigger a QS phenotype in CAI-1-nonproducing V. harveyi and Vibrio cholerae cells. Packaging of CAI-1 into outer membrane vesicles might stabilize the molecule in aqueous environments and facilitate its distribution over distances.IMPORTANCE Formation of membrane vesicles is ubiquitous among bacteria. These vesicles are involved in protein and DNA transfer and offer new approaches for vaccination. Gram-negative bacteria use hydrophobic signaling molecules, among others, for cell-cell communication; however, due to their hydrophobic character, it is unclear how these molecules are disseminated between bacterial cells. Here, we show that the marine pathogen Vibrio harveyi packages one of its QS molecules, the long-chain ketone CAI-1, into outer membrane vesicles (OMVs). Isolated CAI-1-containing vesicles trigger a QS phenotype in CAI-1 nonproducing V. harveyi and also in Vibrio cholerae cells. Packaging of CAI-1 into OMVs not only solubilizes, stabilizes, and concentrates this class of molecules, but facilitate their distribution between bacteria that live in aqueous environments.


Asunto(s)
Membrana Celular/fisiología , Cetonas/metabolismo , Vesículas Transportadoras/fisiología , Vibrio/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Regulación Bacteriana de la Expresión Génica/fisiología , Vibrio/ultraestructura
13.
J Struct Biol ; 204(1): 52-63, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29981486

RESUMEN

Mitochondria are central organelles for energy supply of cells and play an important role in maintenance of ionic balance. Consequently mitochondria are highly sensitive to any kind of stress to which they mainly response by disturbance of respiration, ROS production and release of cytochrome c into the cytoplasm. Many of the physiological and molecular stress reactions of mitochondria are well known, yet there is a lack of information on corresponding stress induced structural changes. 3-D visualization of high-pressure frozen cells by FIB-SEM tomography and TEM tomography as used for the present investigation provide an excellent tool for studying structure related mitochondrial stress reactions. In the present study it is shown that mitochondria in the unicellular fresh-water algal model system Micrasterias as well as in the closely related aquatic higher plant Lemna fuse to local networks as a consequence of exposure to ionic stress induced by addition of KCl, NaCl and CoCl2. In dependence on concentration and duration of the treatment, fusion of mitochondria occurs either by formation of protuberances arising from the outer mitochondrial membrane, or by direct contact of the surface of elongated mitochondria. As our results show that respiration is maintained in both model systems during ionic stress and mitochondrial fusion, as well as formation of protuberances are reversible, we assume that mitochondrial fusion is a ubiquitous process that may help the cells to cope with stress. This may occur by interconnecting the respiratory chains of the individual mitochondria and by enhancing the buffer capacity against stress induced ionic imbalance.


Asunto(s)
Tomografía con Microscopio Electrónico/métodos , Cobalto/química , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Concentración Osmolar , Cloruro de Potasio/química , Cloruro de Sodio/química
14.
Histochem Cell Biol ; 150(2): 171, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29987425

RESUMEN

Unfortunately, part of the legend to Fig. 6 has been incorrectly published.

15.
Histochem Cell Biol ; 150(2): 149-170, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29789992

RESUMEN

A portfolio is presented documenting economic, high-resolution correlative focused ion beam scanning electron microscopy (FIB/SEM) in routine, comprising: (i) the use of custom-labeled slides and coverslips, (ii) embedding of cells in thin, or ultra-thin resin layers for correlative light and electron microscopy (CLEM) and (iii) the claim to reach the highest resolution possible with FIB/SEM in xyz. Regions of interest (ROIs) defined in light microscope (LM), can be relocated quickly and precisely in SEM. As proof of principle, HeLa cells were investigated in 3D context at all stages of the cell cycle, documenting ultrastructural changes during mitosis: nuclear envelope breakdown and reassembly, Golgi degradation and reconstitution and the formation of the midzone and midbody.


Asunto(s)
Imagenología Tridimensional , Mitosis , Animales , Células Cultivadas , Células HeLa , Humanos , Ratones , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión de Rastreo
16.
Int J Syst Evol Microbiol ; 68(4): 1028-1036, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29458671

RESUMEN

A novel slow-growing bacterium, designated strain AW1220T, was isolated from agricultural floodplain soil sampled at Mashare (Kavango region, Namibia) by using a high-throughput cultivation approach. Strain AW1220T was characterized as a Gram-negative, non-motile, rod-shaped bacterium. Occasionally, some cells attained an unusual length of up to 35 µm. The strain showed positive responses for catalase and cytochrome-c oxidase and divided by binary fission and/or budding. The strain had an aerobic chemoorganoheterotrophic metabolism and was also able to grow under micro-oxic conditions. Colonies were small and pink pigmented. Strain AW1220T was found to be a mesophilic, neutrophilic and non-halophilic bacterium. Cells accumulated polyphosphate intracellularly and mainly utilized complex protein substrates for growth. 16S rRNA gene sequence comparisons revealed that strain AW1220T belonged to the class Gemmatimonadetes (=group 1). Its closest relatives were found to be Gemmatimonas aurantiaca T-27T (90.9 % gene sequence similarity), Gemmatimonas phototrophica AP64T (90.8 %) and Longimicrobiumterrae CB-286315T (84.2 %). The genomic G+C content was 73.3 mol%. The major fatty acids were iso-C15 : 0, C16 : 1ω7c and/or iso-C15 : 0 2-OH, iso-C17 : 1ω9c, iso-C15 : 0 3-OH and C16 : 0. The predominant respiratory quinone was MK-9, albeit minor amounts of MK-8 and MK-10 are also present. The polar lipids comprised major amounts of phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol and one unidentified phosphoglycolipid. On the basis of its polyphasic characterization, strain AW1220T represents a novel genus and species of the class Gemmatimonadetes for which the name Roseisolibacter agri gen. nov., sp. nov. is proposed, with the type strain AW1220T (=DSM 104292T=LMG 29977T).


Asunto(s)
Bacterias/clasificación , Filogenia , Microbiología del Suelo , Agricultura , Bacterias/genética , Bacterias/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Complejo IV de Transporte de Electrones/genética , Ácidos Grasos/química , Namibia , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
17.
Microsc Microanal ; 24(5): 526-544, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30246679

RESUMEN

Correlative light and electron microscopy (CLEM) has been in use for several years, however it has remained a costly method with difficult sample preparation. Here, we report a series of technical improvements developed for precise and cost-effective correlative light and scanning electron microscopy (SEM) and focused ion beam (FIB)/SEM microscopy of single cells, as well as large tissue sections. Customized coordinate systems for both slides and coverslips were established for thin and ultra-thin embedding of a wide range of biological specimens. Immobilization of biological samples was examined with a variety of adhesives. For histological sections, a filter system for flat embedding was developed. We validated ultra-thin embedding on laser marked slides for efficient, high-resolution CLEM. Target cells can be re-located within minutes in SEM without protracted searching and correlative investigations were reduced to a minimum of preparation steps, while still reaching highest resolution. The FIB/SEM milling procedure is facilitated and significantly accelerated as: (i) milling a ramp becomes needless, (ii) significant re-deposition of milled material does not occur; and (iii) charging effects are markedly reduced. By optimizing all technical parameters FIB/SEM stacks with 2 nm iso-voxels were achieved over thousands of sections, in a wide range of biological samples.


Asunto(s)
Microscopía Electrónica de Rastreo/métodos , Microscopía/métodos , Adhesión del Tejido/métodos , Animales , Compuestos Epoxi , Técnicas Histológicas/métodos , Humanos , Imagenología Tridimensional/métodos , Inmovilización , Rayos X
18.
Plant J ; 88(4): 531-541, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27420177

RESUMEN

Cytokinesis, the partitioning of the cytoplasm following nuclear division, requires extensive coordination between cell cycle cues, membrane trafficking and microtubule dynamics. Plant cytokinesis occurs within a transient membrane compartment known as the cell plate, to which vesicles are delivered by a plant-specific microtubule array, the phragmoplast. While membrane proteins required for cytokinesis are known, how these are coordinated with microtubule dynamics and regulated by cell cycle cues remains unclear. Here, we document physical and genetic interactions between Transport Protein Particle II (TRAPPII) tethering factors and microtubule-associated proteins of the PLEIADE/AtMAP65 family. These interactions do not specifically affect the recruitment of either TRAPPII or MAP65 proteins to the cell plate or midzone. Rather, and based on single versus double mutant phenotypes, it appears that they are required to coordinate cytokinesis with the nuclear division cycle. As MAP65 family members are known to be targets of cell cycle-regulated kinases, our results provide a conceptual framework for how membrane and microtubule dynamics may be coordinated with each other and with the nuclear cycle during plant cytokinesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclo Celular/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinesis/genética , Citocinesis/fisiología , Proteínas Asociadas a Microtúbulos/genética
19.
Plant Cell ; 26(3): 847-54, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24668747

RESUMEN

The fate of plastid DNA (ptDNA) during leaf development has become a matter of contention. Reports on little change in ptDNA copy number per cell contrast with claims of complete or nearly complete DNA loss already in mature leaves. We employed high-resolution fluorescence microscopy, transmission electron microscopy, semithin sectioning of leaf tissue, and real-time quantitative PCR to study structural and quantitative aspects of ptDNA during leaf development in four higher plant species (Arabidopsis thaliana, sugar beet [Beta vulgaris], tobacco [Nicotiana tabacum], and maize [Zea mays]) for which controversial findings have been reported. Our data demonstrate the retention of substantial amounts of ptDNA in mesophyll cells until leaf necrosis. In ageing and senescent leaves of Arabidopsis, tobacco, and maize, ptDNA amounts remain largely unchanged and nucleoids visible, in spite of marked structural changes during chloroplast-to-gerontoplast transition. This excludes the possibility that ptDNA degradation triggers senescence. In senescent sugar beet leaves, reduction of ptDNA per cell to ∼30% was observed reflecting primarily a decrease in plastid number per cell rather than a decline in DNA per organelle, as reported previously. Our findings are at variance with reports claiming loss of ptDNA at or after leaf maturation.


Asunto(s)
ADN de Cloroplastos/metabolismo , Hojas de la Planta/metabolismo , Cloroplastos/ultraestructura , Fluorescencia , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Plant Cell ; 26(7): 3090-100, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25052714

RESUMEN

Purine nucleotides can be fully catabolized by plants to recycle nutrients. We have isolated a urate oxidase (uox) mutant of Arabidopsis thaliana that accumulates uric acid in all tissues, especially in the developing embryo. The mutant displays a reduced germination rate and is unable to establish autotrophic growth due to severe inhibition of cotyledon development and nutrient mobilization from the lipid reserves in the cotyledons. The uox mutant phenotype is suppressed in a xanthine dehydrogenase (xdh) uox double mutant, demonstrating that the underlying cause is not the defective purine base catabolism, or the lack of UOX per se, but the elevated uric acid concentration in the embryo. Remarkably, xanthine accumulates to similar levels in the xdh mutant without toxicity. This is paralleled in humans, where hyperuricemia is associated with many diseases whereas xanthinuria is asymptomatic. Searching for the molecular cause of uric acid toxicity, we discovered a local defect of peroxisomes (glyoxysomes) mostly confined to the cotyledons of the mature embryos, which resulted in the accumulation of free fatty acids in dry seeds. The peroxisomal defect explains the developmental phenotypes of the uox mutant, drawing a novel link between uric acid and peroxisome function, which may be relevant beyond plants.


Asunto(s)
Arabidopsis/enzimología , Peroxisomas/metabolismo , Urato Oxidasa/metabolismo , Ácido Úrico/metabolismo , Arabidopsis/embriología , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cotiledón/embriología , Cotiledón/enzimología , Cotiledón/genética , Cotiledón/ultraestructura , Ácidos Grasos/metabolismo , Germinación , Mutación , Fenotipo , Componentes Aéreos de las Plantas/embriología , Componentes Aéreos de las Plantas/enzimología , Componentes Aéreos de las Plantas/genética , Componentes Aéreos de las Plantas/ultraestructura , Regiones Promotoras Genéticas/genética , Nucleótidos de Purina/metabolismo , Plantones/embriología , Plantones/enzimología , Plantones/genética , Plantones/ultraestructura , Semillas/embriología , Semillas/enzimología , Semillas/genética , Semillas/ultraestructura , Urato Oxidasa/genética , Ácido Úrico/química , Xantina/química , Xantina/metabolismo , Xantina Deshidrogenasa/genética , Xantina Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA