Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36837937

RESUMEN

Microfluidics has earned a reputation for providing numerous transformative but disconnected devices and techniques. Active research seeks to address this challenge by integrating microfluidic components, including embedded miniature pumps. However, a significant portion of existing microfluidic integration relies on the time-consuming manual fabrication that introduces device variations. We put forward a framework for solving this disconnect by combining new pumping mechanics and 3D printing to demonstrate several novel, integrated and wirelessly driven microfluidics. First, we characterized the simplicity and performance of printed microfluidics with a minimum feature size of 100 µm. Next, we integrated a microtesla (µTesla) pump to provide non-pulsatile flow with reduced shear stress on beta cells cultured on-chip. Lastly, the integration of radio frequency (RF) device and a hobby-grade brushless motor completed a self-enclosed platform that can be remotely controlled without wires. Our study shows how new physics and 3D printing approaches not only provide better integration but also enable novel cell-based studies to advance microfluidic research.

2.
Biomed Opt Express ; 14(12): 6291-6300, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38420307

RESUMEN

Understanding aqueous outflow resistance at the level of aqueous veins has been a challenge to the management of glaucoma. This study investigated resolving the anatomies of aqueous veins and the textures of surrounding sclera using photoacoustic microscopy (PAM). A dual wavelength PAM system was established and validated using imaging phantoms, porcine and human globes perfused with an optical contrast agent ex vivo. The system shows lateral resolution of 8.23 µm and 4.70 µm at 1200 nm and 532 nm, respectively, and an axial resolution of 27.6 µm. The system is able to separately distinguish the aqueous veins and the sclera with high contrast in full circumference of the porcine and human globes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA