Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Immunol ; 200(2): 725-736, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29237778

RESUMEN

The integration of inflammatory signals is paramount in controlling the intensity and duration of immune responses. Eicosanoids, particularly PGE2, are critical molecules in the initiation and resolution of inflammation and in the transition from innate to acquired immune responses. Microsomal PGE synthase 1 (mPGES1) is an integral membrane enzyme whose regulated expression controls PGE2 levels and is highly expressed at sites of inflammation. PGE2 is also associated with modulation of autoimmunity through altering the IL-23/IL-17 axis and regulatory T cell (Treg) development. During a type II collagen-CFA immunization response, lack of mPGES1 impaired the numbers of CD4+ regulatory (Treg) and Th17 cells in the draining lymph nodes. Ag-experienced mPGES1-/- CD4+ cells showed impaired IL-17A, IFN-γ, and IL-6 production when rechallenged ex vivo with their cognate Ag compared with their wild-type counterparts. Additionally, production of PGE2 by cocultured APCs synergized with that of Ag-experienced CD4+ T cells, with mPGES1 competence in the APC compartment enhancing CD4+ IL-17A and IFN-γ responses. However, in contrast with CD4+ cells that were Ag primed in vivo, exogenous PGE2 inhibited proliferation and skewed IL-17A to IFN-γ production under Th17 polarization of naive T cells in vitro. We conclude that mPGES1 is necessary in vivo to mount optimal Treg and Th17 responses during an Ag-driven primary immune response. Furthermore, we uncover a coordination of autocrine and paracrine mPGES1-driven PGE2 production that impacts effector T cell IL-17A and IFN-γ responses.


Asunto(s)
Comunicación Autocrina , Dinoprostona/metabolismo , Comunicación Paracrina , Prostaglandina-E Sintasas/genética , Células TH1/inmunología , Células TH1/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Animales , Epítopos de Linfocito T/inmunología , Regulación de la Expresión Génica , Inmunización , Inmunomodulación , Activación de Linfocitos/inmunología , Ratones , Fenotipo , Prostaglandina-E Sintasas/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/genética , Subtipo EP4 de Receptores de Prostaglandina E/genética
2.
Phys Chem Chem Phys ; 19(5): 3464-3467, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28094371

RESUMEN

In a seminal report on laser-induced nucleation in aqueous supersaturated solutions (Phys. Rev. Lett., 1996, 77, 3475) it was noted that needle-shaped crystals of urea were aligned with the direction of the electric field of the linearly polarized laser pulse. The results gave rise to a new mechanism for control of crystal nucleation involving alignment of solute molecules (optical Kerr effect) now commonly known as non-photochemical laser-induced nucleation (NPLIN). Recent theoretical and experimental work has cast doubts on the optical Kerr effect mechanism. In the present letter we present results from digital imaging of urea-crystal growth immediately following laser-induced nucleation. Analysis of the data shows no statistically significant correlation between crystal angle and direction of linear polarization. The results overturn a long-held result that has shaped theoretical and experimental studies of NPLIN.

3.
J Chem Phys ; 142(14): 144501, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25877584

RESUMEN

A detailed experimental study of laser-induced nucleation (LIN) of carbon dioxide (CO2) gas bubbles is presented. Water and aqueous sucrose solutions supersaturated with CO2 were exposed to single nanosecond pulses (5 ns, 532 nm, 2.4-14.5 MW cm(-2)) and femtosecond pulses (110 fs, 800 nm, 0.028-11 GW cm(-2)) of laser light. No bubbles were observed with the femtosecond pulses, even at high peak power densities (11 GW cm(-2)). For the nanosecond pulses, the number of bubbles produced per pulse showed a quadratic dependence on laser power, with a distinct power threshold below which no bubbles were observed. The number of bubbles observed increases linearly with sucrose concentration. It was found that filtering of solutions reduces the number of bubbles significantly. Although the femtosecond pulses have higher peak power densities than the nanosecond pulses, they have lower energy densities per pulse. A simple model for LIN of CO2 is presented, based on heating of nanoparticles to produce vapor bubbles that must expand to reach a critical bubble radius to continue growth. The results suggest that non-photochemical laser-induced nucleation of crystals could also be caused by heating of nanoparticles.

4.
Int J Pharm ; 647: 123514, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37844673

RESUMEN

Pharmaceutical cocrystals use common robust hydrogen bonding synthons to create novel materials with different physicochemical properties. In this systematic study of a series of cocrystals, we explore the effect of high pressure on one of these commonly used motifs, the acid-pyridine motif, to assess the commonality of behaviour under extreme conditions. We have surveyed five pyridine dicarboxylic acid systems using both synchrotron and neutron diffraction methods to elucidate the changes in structure. We observe that the hydrogen bonding in these systems compress at a similar rate despite the changes to the molecular make-up of the solids and that on compression the changes in structure are indicative that the layers move along the major slip planes in the structure. We have observed two phase transitions to new forms of the pyrazine:malonic acid system, one for each stoichiometric ratio. This study demonstrates that the combination of two complementary diffraction approaches is key to understanding polymorphic behaviour at high pressure.


Asunto(s)
Difracción de Neutrones , Sincrotrones , Enlace de Hidrógeno , Modelos Moleculares , Cristalización/métodos , Ácidos Dicarboxílicos/química , Piridinas/química , Preparaciones Farmacéuticas
5.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 2): 164-175, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36920879

RESUMEN

Understanding the solvation and desolvation of pharmaceutical materials is an important part of materials discovery and development. In situ structural data are vital to understand the changes to crystal form that may occur in the system. In this study, the isolation and characterization of seven solvates of the L-type calcium channel antagonist, nifedipine, is described using variable-temperature powder X-ray diffraction so that the structural evolution as a function of temperature can be followed. The solvates reported herein can be split into those that are structurally similar to the previously reported dimethyl sulfoxide (DMSO) and dioxane solvates and those that have a novel packing arrangement. Of particular note is the solvate with tetrahydrofuran (THF) which has a hydrogen-bonding motif between the nifedipine molecules very similar to that of metastable ß-nifedipine. In addition to variable-temperature X-ray diffraction, the stability of the solid forms was assessed using differential scanning calorimetry and thermogravimetric analysis and indicates that in all cases desolvation results in the thermodynamically stable α-polymorph of nifedipine even with the THF solvate. From the diffraction data the pathway of desolvation during heating of the DMF solvate showed conversion to another likely 1:1 polymorph before desolvation to α-nifedipine. The desolvation of this material indicated a two-stage process; first the initial loss of 90% of the solvent before the last 10% is lost on melting. The methanol solvate shows interesting negative thermal expansion on heating, which is rarely reported in organic materials, but this behaviour can be linked back to the winerack-type hydrogen-bonding pattern of the nifedipine molecules.

6.
Viruses ; 15(2)2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36851646

RESUMEN

Adjuvants are essential components of subunit vaccines added to enhance immune responses to antigens through immunomodulation. Very few adjuvants have been approved for human use by regulatory agencies due to safety concerns. Current subunit vaccine adjuvants approved for human use are very effective in promoting humoral immune responses but are less effective at promoting T-cell immunity. In this study, we evaluated a novel pure enantio-specific cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (R-DOTAP) as an immunomodulator for subunit vaccines capable of inducing both humoral- and cellular-mediated immunity. Using recombinant protein antigens derived from SARS-CoV2 spike or novel computationally optimized broadly reactive influenza antigen (COBRA) proteins, we demonstrated that R-DOTAP nanoparticles promoted strong cellular- and antibody-mediated immune responses in both monovalent and bivalent vaccines. R-DOTAP-based vaccines induced antigen-specific and polyfunctional CD8+ and CD4+ effector T cells and memory T cells, respectively. Antibody responses induced by R-DOTAP showed a balanced Th1/Th2 type immunity, neutralizing activity and protection of mice from challenge with live SARS-CoV2 or influenza viruses. R-DOTAP also facilitated significant dose sparing of the vaccine antigens. These studies demonstrate that R-DOTAP is an excellent immune stimulator for the production of next-generation subunit vaccines containing multiple recombinant proteins.


Asunto(s)
COVID-19 , ARN Viral , Animales , Humanos , Ratones , Adyuvantes Inmunológicos , Cationes , COVID-19/prevención & control , Ácidos Grasos Monoinsaturados , Inmunidad , Lípidos , SARS-CoV-2 , Vacunas Sintéticas/genética , Anticuerpos Antivirales/inmunología
7.
Cryst Growth Des ; 23(10): 7217-7230, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37808905

RESUMEN

We present an extensive exploration of the solid-form landscape of chlorpropamide (CPA) using a combined experimental-computational approach at the frontiers of both fields. We have obtained new conformational polymorphs of CPA, placing them into context with known forms using flexible-molecule crystal structure prediction. We highlight the formation of a new polymorph (ζ-CPA) via spray-drying experiments despite its notable metastability (14 kJ/mol) relative to the thermodynamic α-form, and we identify and resolve the ball-milled η-form isolated in 2019. Additionally, we employ impurity- and gel-assisted crystallization to control polymorphism and the formation of novel multicomponent forms. We, thus, demonstrate the power of this collaborative screening approach to observe, rationalize, and control the formation of new metastable forms.

8.
Chem Sci ; 14(28): 7716-7724, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37476711

RESUMEN

Postsynthetic modification of metal-organic frameworks (MOFs) has proven to be a hugely powerful tool to tune physical properties and introduce functionality, by exploiting reactive sites on both the MOF linkers and their inorganic secondary building units (SBUs), and so has facilitated a wide range of applications. Studies into the reactivity of MOF SBUs have focussed solely on removal of neutral coordinating solvents, or direct exchange of linkers such as carboxylates, despite the prevalence of ancillary charge-balancing oxide and hydroxide ligands found in many SBUs. Herein, we show that the µ2-OH ligands in the MIL-53 topology Sc MOF, GUF-1, are labile, and can be substituted for µ2-OCH3 units through reaction with pore-bound methanol molecules in a very rare example of pressure-induced postsynthetic modification. Using comprehensive solid-state NMR spectroscopic analysis, we show an order of magnitude increase in this cluster anion substitution process after exposing bulk samples suspended in methanol to a pressure of 0.8 GPa in a large volume press. Additionally, single crystals compressed in diamond anvil cells with methanol as the pressure-transmitting medium have enabled full structural characterisation of the process across a range of pressures, leading to a quantitative single-crystal to single-crystal conversion at 4.98 GPa. This unexpected SBU reactivity - in this case chemisorption of methanol - has implications across a range of MOF chemistry, from activation of small molecules for heterogeneous catalysis to chemical stability, and we expect cluster anion substitution to be developed into a highly convenient novel method for modifying the internal pore surface and chemistry of a range of porous materials.

9.
Phys Chem Chem Phys ; 14(1): 90-3, 2012 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-22094543

RESUMEN

Non-photochemical laser-induced nucleation (NPLIN) of glacial acetic acid (GAA) is demonstrated. The fraction of samples nucleated depends linearly on peak laser power density at low powers (<100 MW cm(-2)) with a threshold of (9.0 ± 4.2) MW cm(-2); at higher laser powers the fraction reaches a plateau of 0.75 ± 0.24 (2σ uncertainties). A simple model based on polarizability of pre-nucleating clusters gives a value of the solid-liquid interfacial tension γ(SL) = 15.5 mJ m(-2). It is hoped that the results will stimulate new developments in experimental and theoretical studies of cluster structure and nucleation in liquids.

10.
Infect Immun ; 79(1): 177-84, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20956571

RESUMEN

Heat shock factor 1 (HSF1) is a stress-induced transcription factor that promotes expression of genes that protect mammalian cells from the lethal effects of severely elevated temperatures (>42°C). However, we recently showed that HSF1 is activated at a lower temperature (39.5°C) in T cells, suggesting that HSF1 may be important for preserving T cell function during pathogen-induced fever responses. To test this, we examined the role of HSF1 in clearance of Listeria monocytogenes, an intracellular bacterial pathogen that elicits a strong CD8(+) T cell response in mice. Using temperature transponder microchips, we showed that the core body temperature increased approximately 2°C in L. monocytogenes-infected mice and that the fever response was maintained for at least 24 h. HSF1-deficient mice cleared a low-dose infection with slightly slower kinetics than did HSF1(+/+) littermate controls but were significantly more susceptible to challenges with higher doses of bacteria. Surprisingly, HSF1-deficient mice did not show a defect in CD8(+) T cell responses following sublethal infection. However, when HSF1-deficient mice were challenged with high doses of L. monocytogenes, increased levels of serum tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) compared to those of littermate control mice were observed, and rapid death of the animals occurred within 48 to 60 h of infection. Neutralization of TNF-α enhanced the survival of HSF1-deficient mice. These results suggest that HSF1 is needed to prevent the overproduction of proinflammatory cytokines and subsequent death due to septic shock that can result following high-dose challenge with bacterial pathogens.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Fiebre/metabolismo , Listeria monocytogenes , Listeriosis/metabolismo , Factores de Transcripción/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Linfocitos T CD8-positivos/fisiología , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/fisiología , Genotipo , Factores de Transcripción del Choque Térmico , Interferón gamma/sangre , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción/genética , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/genética
11.
J Chem Phys ; 135(11): 114508, 2011 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-21950872

RESUMEN

We report the observation of non-photochemical laser-induced nucleation (NPLIN) of sodium chlorate from its melt using nanosecond pulses of light at 1064 nm. The fraction of samples that nucleate is shown to depend linearly on the peak power density of the laser pulses. Remarkably, we observe that most samples are nucleated by the laser back into the enantiomorph (dextrorotatory or levorotatory) of the solid prior to melting. We do not observe a significant dependence on polarization of the light, and we put forward symmetry arguments that rule out an optical Kerr effect mechanism. Our observations of retention of chirality can be explained by decomposition of small amounts of the sodium chlorate to form sodium chloride, which provide cavities for retention of clusters of sodium chlorate even 18 °C above the melting point. These clusters remain sub-critical on cooling, but can be activated by NPLIN via an isotropic polarizability mechanism. We have developed a heterogeneous model of NPLIN in cavities, which reproduces the experimental data using simple physical data available for sodium chlorate.

12.
Chem Commun (Camb) ; 57(89): 11827-11830, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34698321

RESUMEN

Dynamic organic crystals have come to the fore as potential lightweight alternatives to inorganic actuators providing high weight-to-force ratios. We have observed pressure-induced superelastic behaviour in Form I of isonicotinamide. The reversible single-crystal to single-crystal transformation exhibited by the system is an important component for functioning actuators. Crucially, our observations have enabled us to propose a mechanism for the molecular movement supported by Pixel energy calculations, that may pave the way for the future design and development of functioning dynamic crystals.


Asunto(s)
Elasticidad , Niacinamida/química , Enlace de Hidrógeno , Modelos Químicos , Transición de Fase , Presión
13.
Faraday Discuss ; 167: 441-54, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24640505

RESUMEN

Measurements of second-harmonic scattering (SHS) from concentrated aqueous solutions of urea are reported for the first time using scanning microscopy. SHS signal was measured as a function of solution concentration (C) over a range of saturation conditions from undersaturated (S = 0.15) to supersaturated (5 = 1.86), where S = C/C(sat) and C(sat) is the saturation concentration. The results show a non-linear increase in SHS signal against concentration, with local maxima near S = 0.95 and 1.75 suggesting a change in solution structure near these points. Rayleigh scattering images indicate the presence of particles in nearly saturated (S = 0.95) urea solutions. Time-dependent SHS measurements indicate that signals originate from individual events encountered during scanning of the focal volume through the solution, consistent with second harmonic generation (SHG) from particles. SHG from aqueous dispersions of barium titanate (BaTiO3) nanoparticles with diameters <200 nm, showed signals approximately 20 times larger than urea solutions. The results suggest the existence of a population of semi-ordered clusters of urea that changes with solution concentration.


Asunto(s)
Compuestos de Bario/química , Titanio/química , Urea/química , Luz , Microscopía Fluorescente/métodos , Nanopartículas/química , Dispersión de Radiación , Soluciones , Procesos Estocásticos , Factores de Tiempo , Agua/química
14.
Chem Commun (Camb) ; 46(40): 7634-6, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-20848019

RESUMEN

Enantiomorphic symmetry breaking of stirred samples of molten sodium chlorate is demonstrated, revealing the unexpected involvement of an achiral solid phase. The results should stimulate future computational models of nucleation, including symmetry breaking, and have implications for mechanisms that invoke enantiomorphism in natural minerals to explain biohomochirality.

15.
J Immunol ; 180(12): 8361-8, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18523303

RESUMEN

Microsomal PGE synthase-1 (mPGES-1) is an inducible enzyme that acts downstream of cyclooxygenase and specifically catalyzes the conversion of PGH(2) to PGE(2). The present study demonstrates the effect of genetic deletion of mPGES-1 on the developing immunologic responses and its impact on the clinical model of bovine collagen-induced arthritis. mPGES-1 null and heterozygous mice exhibited decreased incidence and severity of arthritis compared with wild-type mice in a gene dose-dependent manner. Histopathological examination revealed significant reduction in lining hyperplasia and tissue destruction in mPGES-1 null mice compared with their wild-type littermates. mPGES-1 deficient mice also exhibited attenuation of mechanical nociception in a gene dose-dependent manner. In addition, mPGES-1 null and heterozygous mice showed a marked reduction of serum IgG against type II collagen, including subclasses IgG1, IgG2a, IgG2b, IgG2c, and IgG3, compared with wild-type mice, which correlated with the reduction in observed inflammatory features. These results demonstrate for the first time that deficiency of mPGES-1 inhibits the development of collagen-induced arthritis, at least in part, by blocking the development of a humoral immune response against type II collagen. Pharmacologic inhibition of mPGES-1 may therefore impact both the inflammation and the autoimmunity associated with human diseases such as rheumatoid arthritis.


Asunto(s)
Artritis Experimental/enzimología , Artritis Experimental/terapia , Colágeno Tipo II/inmunología , Ciclooxigenasa 1/deficiencia , Ciclooxigenasa 1/genética , Inmunoglobulina G , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Microsomas/enzimología , Índice de Severidad de la Enfermedad , Animales , Artritis Experimental/genética , Artritis Experimental/inmunología , Bovinos , Colágeno Tipo II/administración & dosificación , Ciclooxigenasa 1/fisiología , Ciclooxigenasa 2/biosíntesis , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/fisiología , Femenino , Eliminación de Gen , Tamización de Portadores Genéticos , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/sangre , Inmunoglobulina G/fisiología , Inmunoglobulina M/biosíntesis , Incidencia , Masculino , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos DBA , Ratones Noqueados , ARN Mensajero/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA