Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochimie ; 80(5-6): 437-50, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-9782384

RESUMEN

The use of solid-state nuclear magnetic resonance (NMR) as a tool to determine the structure of membrane molecules is reviewed with a particular emphasis on techniques that provide information on orientation or order. Experiments reported here have been performed in membranes, rather than in micelles or organic solvents. Several ways to prepare and handle the samples are discussed, like sample orientation and magic-angle spinning (MAS). Results concerning lipids, membrane peptides and proteins are included, as well as a discussion regarding the potential of such methods and their pitfalls.


Asunto(s)
Membrana Celular/química , Espectroscopía de Resonancia Magnética/métodos , Lípidos de la Membrana/química , Proteínas/química , Anisotropía , Isótopos de Carbono , Membrana Celular/ultraestructura , Isótopos de Nitrógeno , Isótopos de Fósforo
2.
J Magn Reson ; 145(2): 367-72, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10910707

RESUMEN

Polarization transfer is a key experiment for the detection of insensitive nuclei by NMR. Transfer in liquids is often achieved through J-coupling using the INEPT experiment, while in solids the dipolar coupling is used with cross polarization. Liquid crystals, including lipid membranes, are intermediate cases between solids and liquids. In the present article, we compare several transfer methods for lipid membranes spinning at the magic angle. It is shown that the most commonly used cross polarization technique is, in most cases, advantageously replaced by refocused INEPT or even by the NOE enhancement experiment, a method that is not normally used in that context. In principle, these enhancement techniques could be applied to other systems, including biological tissues and, more generally, soft matter systems that are neither solid nor liquid by NMR standards.


Asunto(s)
Lípidos/química , Membranas Artificiales , Dimiristoilfosfatidilcolina/química , Espectroscopía de Resonancia Magnética
3.
Eur Biophys J ; 29(3): 184-95, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10968210

RESUMEN

It has been reported that repetitive freeze-thaw cycles of aqueous suspensions of dioleoylphosphatidylcholine form vesicles with a diameter smaller than 200 nm. We have applied the same treatment to a series of phospholipid suspensions with particular emphasis on dioleoylphosphatidylcholine/dioleoylphosphatidic acid (DOPC/DOPA) mixtures. Freeze-fracture electron microscopy revealed that these unsaturated lipids form unilamellar vesicles after 10 cycles of freeze-thawing. Both electron microscopy and broad-band 31P NMR spectra indicated a disparity of the vesicle sizes with a highest frequency for small unilamellar vesicles (diameters < or =30 nm) and a population of larger vesicles with a frequency decreasing exponentially as the diameter increases. From 31P NMR investigations we inferred that the average diameter of DOPC/DOPA vesicles calculated on the basis of an exponential size distribution was of the order of 100 nm after 10 freeze-thaw cycles and only 60 nm after 50 cycles. Fragmentation by repeated freeze-thawing does not have the same efficiency for all lipid mixtures. As found already by others, fragmentation into small vesicles requires the presence of salt and does not take place in pure water. Repetitive freeze-thawing is also efficient to fragment large unilamellar vesicles obtained by filtration. If applied to sonicated DOPC vesicles, freeze-thawing treatment causes fusion of sonicated unilamellar vesicles into larger vesicles only in pure water. These experiments show the usefulness of NMR as a complementary technique to electron microscopy for size determination of lipid vesicles. The applicability of the freeze-thaw technique to different lipid mixtures confirms that this procedure is a simple way to obtain unilamellar vesicles.


Asunto(s)
Microscopía Electrónica/instrumentación , Microscopía Electrónica/métodos , Isótopos de Fósforo , Fosforilcolina/análogos & derivados , Técnica de Fractura por Congelación/métodos , Congelación , Liposomas/metabolismo , Lisofosfatidilcolinas/química , Espectroscopía de Resonancia Magnética , Modelos Teóricos , Ácidos Fosfatidicos/química , Fosfatidilcolinas/química , Fosforilcolina/química , Temperatura
4.
Cell Mol Life Sci ; 60(8): 1559-74, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-14513831

RESUMEN

Membrane proteins classically are handled in aqueous solutions as complexes with detergents. The dissociating character of detergents, combined with the need to maintain an excess of them, frequently results in more or less rapid inactivation of the protein under study. Over the past few years, we have endeavored to develop a novel family of surfactants, dubbed amphipols (APs). APs are amphiphilic polymers that bind to the transmembrane surface of the protein in a noncovalent but, in the absence of a competing surfactant, quasi-irreversible manner. Membrane proteins complexed by APs are in their native state, stable, and they remain water-soluble in the absence of detergent or free APs. An update is presented of the current knowledge about these compounds and their demonstrated or putative uses in membrane biology.


Asunto(s)
Proteínas de la Membrana/química , Tensoactivos/química , Animales , Proteínas de la Membrana Bacteriana Externa/química , Detergentes/farmacología , Diseño de Fármacos , Complejo III de Transporte de Electrones/química , Técnicas In Vitro , Ligandos , Proteínas de la Membrana/antagonistas & inhibidores , Membranas Artificiales , Modelos Moleculares , Estructura Molecular , Polímeros/síntesis química , Polímeros/química , Polímeros/aislamiento & purificación , Solubilidad , Soluciones , Tensoactivos/síntesis química , Tensoactivos/aislamiento & purificación , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA