Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nanotechnology ; 33(4)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34670198

RESUMEN

When designing the gate-dielectric of a floating-gate-transistor, one must make a tradeoff between the necessity of providing an ultra-small leakage current behavior for long state retention, and a moderate to high tunneling-rate for fast programming speed. Here we report on a memristively programmable transistor that overcomes this tradeoff. The operation principle is comparable to floating-gate-transistors, but the advantage of the analyzed concept is that ions instead of electrons are used for programming. Since the mass of ions is significantly larger than the effective mass of electrons, gate-dielectrics with higher leakage current levels can be used. We demonstrate the practical feasibility of the device using a proof-of-concept study based on a micrometer-sized thin-film transistor and LT-Spice simulations of 32 nm transistors. Memristively programmable transistors have the potential of high programming endurance and retention times, fast programming speeds, and high scalability.

2.
Langmuir ; 34(4): 1347-1352, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29303591

RESUMEN

The oxygen evolution reaction (OER) during alkaline water electrolysis is the bottleneck of water splitting. Perovskite materials have been particularly proposed as good and economically reasonable electrocatalysts for the OER, showing promise and advantages with respect to classic metallic electrodes. However, the degradation of perovskites during catalysis limits their service lifetime. Recently, the material BaCo0.98Ti0.02O3-δ:Co3O4 was shown to be electrocatalytically and chemically stable during water electrolysis even under industrially relevant conditions. The lifetime of this perovskite-based system is prolonged by a factor of 10 in comparison to that of Pr0.2Ba0.8CoO3-δ and is comparable to that of industrially applied electrodes. Here we report on the degradation kinetics of several OER catalysts at room temperature, comparatively studied by monitoring the oxygen evolution at microelectrodes. A decrease in the reaction rate within a maximum of 60 s is observed, which is related to chemical and/or structural changes at the oxide surface.

3.
Phys Chem Chem Phys ; 20(2): 989-996, 2018 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-29234759

RESUMEN

Ion transport in ceramics of the low-temperature phase of tantalum pentoxide, L-Ta2O5, was examined by means of diffusion experiments and subsequent analysis of diffusion profiles with time-of-flight secondary ion mass spectrometry (ToF-SIMS). 18O/16O isotope anneals were used to investigate oxygen diffusion, and oxygen tracer diffusion coefficients were obtained for the temperature range of 623 ≤ T/K ≤ 873 at an oxygen partial pressure of pO2 = 0.2 bar and for the oxygen partial pressure range of 10-2 ≤ pO2/bar ≤ 100 at a temperature of T = 723 K. Cation diffusion in Ta2O5 was probed by using chemically similar niobium as the diffusant (in the absence of stable tantalum isotopes). Thin films of Nb2O5 were deposited onto Ta2O5 ceramics; diffusion anneals yielded niobium diffusion coefficients for the temperature range of 1073 ≤ T/K ≤ 1223 at an oxygen partial pressure of pO2 = 0.2 bar. Comparison of the measured diffusion coefficients strongly suggests that oxygen is many orders of magnitude more mobile than niobium in L-Ta2O5 at these temperatures and at pO2 = 0.2 bar. The electrical conductivity was also determined in the range 950 ≤ T/K ≤ 1200 and 10-23 ≤ pO2/bar ≤ 10-2. Considered together with the measured diffusion coefficients, the conductivity data indicate that under oxidising conditions conduction is due to oxygen ions above T = 1090-1130 K and due to electron holes below this temperature range. Point-defect models are presented that are consistent with these transport data and with conductivity data in the literature. They suggest that under oxidising conditions oxygen interstitials are the majority ionic charge carriers in L-Ta2O5. The implications for resistive switching devices are discussed.

4.
Nanotechnology ; 28(13): 135205, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28248653

RESUMEN

The counter-electrode material in resistively switching electrochemical metallization cells (ECMs) is a crucial factor influencing the nucleation of conductive filaments, the equilibrium electrode potentials, and kinetics in the devices, and hence the overall switching characteristics. Here, we demonstrate the influence of the counter-electrode (CE) material on the SET events and the importance of appropriate choice and combination of materials. The counter-electrode material influences the counter-electrode processes at the CE/insulator interface and consequently determines the metal ion concentration in the cells. We measured the switching kinetics for SiO2/Ag based ECM cells using different counter-electrode materials with different electrocatalytic activities towards water reduction, namely platinum, ruthenium, and iridium oxide, as well as titanium nitride and tantalum. The experimental results are fitted using a physical simulation model and are analysed for the limiting factors for fast SET kinetics.

5.
Nanotechnology ; 24(38): 384008, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23999250

RESUMEN

Dynamic physics-based models of resistive switching devices are of great interest for the realization of complex circuits required for memory, logic and neuromorphic applications. Here, we apply such a model of an electrochemical metallization (ECM) cell to complementary resistive switches (CRSs), which are favorable devices to realize ultra-dense passive crossbar arrays. Since a CRS consists of two resistive switching devices, it is straightforward to apply the dynamic ECM model for CRS simulation with MATLAB and SPICE, enabling study of the device behavior in terms of sweep rate and series resistance variations. Furthermore, typical memory access operations as well as basic implication logic operations can be analyzed, revealing requirements for proper spike and level read operations. This basic understanding facilitates applications of massively parallel computing paradigms required for neuromorphic applications.


Asunto(s)
Electrónica/instrumentación , Modelos Neurológicos , Redes Neurales de la Computación , Simulación por Computador , Electroquímica , Nanotecnología/instrumentación
6.
Nanotechnology ; 23(14): 145703, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22434046

RESUMEN

Microcrossbar structured electrochemical metallization (ECM) cells based on silver iodide (AgI) solid electrolyte were fabricated and analyzed in terms of the resistive switching effect. The switching behavior implies the existence of quantized conductance higher than 78 µS which can be identified as a multiple of the single atomic point contact conductivity. The nonlinearity of the switching kinetics has been analyzed in detail. Fast switching in at least 50 ns was observed for short pulse measurements.

7.
Nanotechnology ; 23(30): 305205, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22782173

RESUMEN

The realization of logic operations within passive crossbar memory arrays is a promising approach to expand the fields of application of such architectures. Material implication was recently suggested as the basic function of memristive crossbar junctions, and single bipolar resistive switches (BRS) as well as complementary resistive switches (CRS) were shown to be capable of realizing this logical functionality. Based on a systematic analysis of the Boolean functions, we demonstrate here that 14 of 16 Boolean functions can be realized with a single BRS or CRS cell in at most three sequential cycles. Since the read-out step is independent of the logic operation steps, the result of the logic operation is directly stored to memory, making logic-in-memory applications feasible.

8.
Rev Sci Instrum ; 93(2): 024705, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35232136

RESUMEN

Resistive switching devices and other components with negative differential resistance (NDR) are emerging as possible electronic constituents of next-generation computing architectures. Due to the exhibited NDR effects, switching operations are strongly affected by the presence of resistance in series with the memory cell. Experimental measurements useful in the development of these devices use a deliberate addition of series resistance, which can be done either by integrating resistors on-chip or by connecting external components to the wafer probing system. The former approach is considered inflexible because the resistance value attached to a given device cannot be changed or removed, while the latter approach tends to create parasitic effects that impact controllability and interfere with measurements. In this work, we introduce a circuit design for flexible characterization of two-terminal nanodevices that provides a programmatically adjustable external series resistance while maintaining low parasitic capacitance. Experimental demonstrations show the impact of the series resistance on NDR and resistive switching measurements.

9.
Nanotechnology ; 22(25): 254001, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21572202

RESUMEN

Redox-based memristive switching has been observed in many binary transition metal oxides and related compounds. Since, on the one hand, many recent reports utilize TiO(2) for their studies of the memristive phenomenon and, on the other hand, there is a long history of the electronic structure and the crystallographic structure of TiO(2) under the impact of reduction and oxidation processes, we selected this material as a prototypical material to provide deeper insight into the mechanisms behind memristive switching. In part I, we briefly outline the results of the historical and recent studies of electroforming and resistive switching of TiO(2)-based cells. We describe the (tiny) stoichiometrical range for TiO(2 - x) as a homogeneous compound, the aggregation of point defects (oxygen vacancies) into extended defects, and the formation of the various Magnéli phases. Furthermore, we discuss the driving forces for these solid-state reactions from the thermodynamical point of view. In part II, we provide new experimental details about the hierarchical transformation of TiO(2) single crystals into Magnéli phases, and vice versa, under the influence of chemical, electrical and thermal gradients, on the basis of the macroscopic and nanoscopic measurements. Those include thermogravimetry, high-temperature x-ray diffraction (XRD), high-temperature conductivity measurements, as well as low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), and LC-AFM (atomic force microscope equipped with a conducting tip) studies. Conclusions are drawn concerning the relevant parameters that need to be controlled in order to tailor the memristive properties.

10.
Nanotechnology ; 22(39): 395203, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21891857

RESUMEN

Complementary resistive switches (CRS) were recently suggested to solve the sneak path problem of larger passive memory arrays. CRS cells consist of an antiserial setup of two bipolar resistive switching cells. The conventional destructive readout for CRS cells is based on a current measurement which makes a considerable call on the switching endurance. Here, we report a new approach for a nondestructive readout (NDRO) based on a capacity measurement. We suggest a concept of an alternative setup of a CRS cell in which both resistive switching cells have similar switching properties but are distinguishable by different capacities. The new approach has the potential of an energy saving and fast readout procedure without decreasing cycling performance and is not limited by the switching kinetics for integrated passive memory arrays.

11.
Rev Sci Instrum ; 92(5): 054701, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243265

RESUMEN

Resistive switching devices, important for emerging memory and neuromorphic applications, face significant challenges related to the control of delicate filamentary states in the oxide material. As a device switches, its rapid conductivity change is involved in a positive feedback process that would lead to runaway destruction of the cell without current, voltage, or energy limitation. Typically, cells are directly patterned on MOS transistors to limit the current, but this approach is very restrictive as the necessary integration limits the materials available as well as the fabrication cycle time. In this article, we propose an external circuit to cycle resistive memory cells, capturing the full transfer curves while driving the cells in a way that suppresses runaway transitions. Using this circuit, we demonstrate the acquisition of 105 I, V loops per second without using on-wafer current limiting transistors. This setup brings voltage sweeping measurements to a relevant timescale for applications and enables many new experimental possibilities for device evaluation in a statistical context.

12.
Sci Adv ; 6(19): eaaz9079, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32548248

RESUMEN

Future development of the modern nanoelectronics and its flagships internet of things, artificial intelligence, and neuromorphic computing is largely associated with memristive elements, offering a spectrum of inevitable functionalities, atomic level scalability, and low-power operation. However, their development is limited by significant variability and still phenomenologically orientated materials' design strategy. Here, we highlight the vital importance of materials' purity, demonstrating that even parts-per-million foreign elements substantially change performance. Appropriate choice of chemistry and amount of doping element selectively enhances the desired functionality. Dopant/impurity-dependent structure and charge/potential distribution in the space-charge layers and cell capacitance determine the device kinetics and functions. The relation between chemical composition/purity and switching/neuromorphic performance is experimentally evidenced, providing directions for a rational design of future memristive devices.

13.
Nanotechnology ; 20(7): 075305, 2009 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-19417416

RESUMEN

Ferroelectrics hold promise for high-density non-volatile data storage device use. Their eventual performance will strongly depend on the available displacement current, which primarily scales with the area but might to some extent be enhanced by substrate-induced homogeneous strain while the interface at the same time controls the coercive field. As the lateral dimensions persistently decrease, the only way to keep track of the real figures of merit with realistic electrodes is to use a macroscopic configuration instead of scanning probe approaches with undefined interfaces. We report on a novel approach to integrating arbitrarily patterned, highly registered ferroelectric nanoislands fabricated by a template controlled chemical solution deposition approach into a matrix of a low-k dielectric spin-on glass. These structures with a narrow lateral size distribution below 100 nm are subsequently polished in a chemical-mechanical polishing step to expose their very tops, whose piezoelectrically active area depends on the polishing time. At this stage our findings indicate a full piezoelectric functionality of the locally exposed nanoislands. The structures are ready for macroscopic top electrodes to average the displacement current over hundreds of almost identical structures, to provide a nanoscale scaling behaviour of the individual ferroelectric capacitors.

14.
Sci Rep ; 9(1): 14618, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31602003

RESUMEN

Memristive switches are able to act as both storage and computing elements, which make them an excellent candidate for beyond-CMOS computing. In this paper, multi-input memristive switch logic is proposed, which enables the function X OR (Y NOR Z) to be performed in a single-step with three memristive switches. This ORNOR logic gate increases the capabilities of memristive switches, improving the overall system efficiency of a memristive switch-based computing architecture. Additionally, a computing system architecture and clocking scheme are proposed to further utilize memristive switching for computation. The system architecture is based on a design where multiple computational function blocks are interconnected and controlled by a master clock that synchronizes system data processing and transfer. The clocking steps to perform a full adder with the ORNOR gate are presented along with simulation results using a physics-based model. The full adder function block is integrated into the system architecture to realize a 64-bit full adder, which is also demonstrated through simulation.

15.
Sci Rep ; 8(1): 9483, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29930354

RESUMEN

Resistive switching random access memories (ReRAM) are promising candidates for energy efficient, fast, and non-volatile universal memories that unite the advantages of RAM and hard drives. Unfortunately, the current ReRAM materials are incompatible with optical interconnects and wires. Optical signal transmission is, however, inevitable for next generation memories in order to overcome the capacity-bandwidth trade-off. Thus, we present here a proof-of-concept of a new type of resistive switching realized in III-V semiconductors, which meet all requirements for the implementation of optoelectronic circuits. This resistive switching effect is based on controlling the spatial positions of vacancy-induced deep traps by stimulated migration, opening and closing a conduction channel through a semi-insulating compensated surface layer. The mechanism is widely applicable to opto-electronically usable III-V compound semiconductors.

16.
Sci Rep ; 8(1): 3774, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29491379

RESUMEN

Perovskites such as SrTiO3, BaTiO3, and CaTiO3 have become key materials for future energy-efficient memristive data storage and logic applications due to their ability to switch their resistance reversibly upon application of an external voltage. This resistance switching effect is based on the evolution of nanoscale conducting filaments with different stoichiometry and structure than the original oxide. In order to design and optimize memristive devices, a fundamental understanding of the interaction between electrochemical stress, stoichiometry changes and phase transformations is needed. Here, we follow the approach of investigating these effects in a macroscopic model system. We show that by applying a DC voltage under reducing conditions on a perovskite slab it is possible to induce stoichiometry polarization allowing for a controlled decomposition related to incongruent sublimation of the alkaline earth metal starting in the surface region. This way, self-formed mesoporous layers can be generated which are fully depleted by Sr (or Ba, Ca) but consist of titanium oxides including TiO and Ti3O with tens of micrometre thickness. This illustrates that phase transformations can be induced easily by electrochemical driving forces.

17.
ACS Appl Mater Interfaces ; 9(1): 1086-1092, 2017 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-27992161

RESUMEN

The formation mechanism of 2-dimensional electron gases (2DEGs) at heterointerfaces between nominally insulating oxides is addressed with a thermodynamical approach. We provide a comprehensive analysis of the thermodynamic ground states of various 2DEG systems directly probed in high temperature equilibrium conductivity measurements. We unambiguously identify two distinct classes of oxide heterostructures: For epitaxial perovskite/perovskite heterointerfaces (LaAlO3/SrTiO3, NdGaO3/SrTiO3, and (La,Sr)(Al,Ta)O3/SrTiO3), we find the 2DEG formation being based on charge transfer into the interface, stabilized by the electric field in the space charge region. In contrast, for amorphous LaAlO3/SrTiO3 and epitaxial γ-Al2O3/SrTiO3 heterostructures, the 2DEG formation mainly relies on the formation and accumulation of oxygen vacancies. This class of 2DEG structures exhibits an unstable interface reconstruction associated with a quenched nonequilibrium state.

18.
Nat Commun ; 8: 15367, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28530242

RESUMEN

Since their discovery, quasicrystals have attracted continuous research interest due to their unique structural and physical properties. Recently, it was demonstrated that dodecagonal quasicrystals could be used as bandgap materials in next-generation photonic devices. However, a full understanding of the formation mechanism of quasicrystals is necessary to control their physical properties. Here we report the formation of a two-dimensional dodecagonal fullerene quasicrystal on a Pt3Ti(111) surface, which can be described in terms of a square-triangle tiling. Employing density functional theory calculations, we identify the complex adsorption energy landscape of the Pt-terminated Pt3Ti surface that is responsible for the quasicrystal formation. We demonstrate the presence of quasicrystal-specific phason strain, which provides the degree of freedom required to accommodate the quasicrystalline structure on the periodic substrate. Our results reveal detailed insight into an interface-driven formation mechanism and open the way to the creation of tailored fullerene quasicrystals with specific physical properties.

19.
Handb Exp Pharmacol ; (174): 147-67, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16370328

RESUMEN

Stem cells possess the ability to self-renew by symmetric divisions and, under certain circumstances, differentiate to a committed lineage by asymmetric cell divisions. Depending on the origin, stem cells are classified as either embryonic or adult. Embryonic stem cells are obtained from the inner cell mass of the blastocyst, a structure that appears during embryonic development at day 6 in humans and day 3.5 in mice. Adult stem cells are present within tissues of adult organisms and are responsible for cell turnover or repopulation of tissues under normal or exceptional circumstances. Taken together, stem cells might represent a potential source of tissues for cell therapy protocols, and diabetes is a candidate disease that may benefit from cell replacement protocols. The pathology of type 1 diabetes is caused by the autoimmune destruction or malfunction of pancreatic beta cells, and consequently, a lack of insulin. The absence of insulin is life-threatening, thus requiring diabetic patients to take daily hormone injections from exogenous sources; however, insulin injections do not adequately mimic beta cell function. This results in the development of diabetic complications such as neuropathy, nephropathy, retinopathy and diverse cardiovascular disorders. This chapter intends to summarize the possibilities opened by embryonic and adult stem cells in regenerative medicine for the cure of diabetes.


Asunto(s)
Diabetes Mellitus/patología , Diabetes Mellitus/terapia , Trasplante de Islotes Pancreáticos , Células Madre/citología , Células Madre/metabolismo , Animales , Diferenciación Celular , Embrión de Mamíferos/citología , Humanos , Páncreas/crecimiento & desarrollo
20.
Nanoscale ; 8(29): 13924-33, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26865393

RESUMEN

Increasing the efficiency and stability of bimetallic electro catalysts is particularly important for future clean energy technologies. However, the relationship between the surface termination of these alloys and their catalytic activity is poorly understood. Therefore, we report on fundamental UHV-SPM, LEED, and DFT calculations of the Pt3Ti(111) single crystal surface. Using voltage dependent imaging the surface termination of Pt3Ti(111) was studied with atomic resolution. Combining these images with simulated STM maps based on ab initio DFT calculations allowed us to identify the three upper layers of the Pt3Ti(111) single crystal and their influence upon the surface electronic structure. Our results show that small changes in the composition of the second and third atomic layer are of significant influence upon the surface electronic structure of the Pt3Ti electro catalyst. Furthermore, we provide relevant insights into the dependence of the surface termination on the preparation conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA