Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Lab Anim (NY) ; 53(1): 13-17, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37996697

RESUMEN

Non-human primate studies are unique in translational research, especially in neurosciences where neuroimaging approaches are the preferred methods used for cross-species comparative neurosciences. In this regard, neuroimaging database development and sharing are encouraged to increase the number of subjects available to the community, while limiting the number of animals used in research. Here we present a simultaneous positron emission tomography (PET)/magnetic resonance (MR) dataset of 20 Macaca fascicularis images structured according to the Brain Imaging Data Structure standards. This database contains multiple MR imaging sequences (anatomical, diffusion and perfusion imaging notably), as well as PET perfusion and inflammation imaging using respectively [15O]H2O and [11C]PK11195 radiotracers. We describe the pipeline method to assemble baseline data from various cohorts and qualitatively assess all the data using signal-to-noise and contrast-to-noise ratios as well as the median of intensity and the pseudo-noise-equivalent-count rate (dynamic and at maximum) for PET data. Our study provides a detailed example for quality control integration in preclinical and translational PET/MR studies with the aim of increasing reproducibility. The PREMISE database is stored and available through the PRIME-DE consortium repository.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Animales , Humanos , Macaca fascicularis , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Primates , Encéfalo/diagnóstico por imagen
2.
Neurotherapeutics ; 20(3): 789-802, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36976495

RESUMEN

Reperfusion therapies in acute ischemic stroke have demonstrated their efficacy in promoting clinical recovery. However, ischemia/reperfusion injury and related inflammation remain a major challenge in patient clinical management. We evaluated the spatio-temporal evolution of inflammation using sequential clinical [11C]PK11195 PET-MRI in a non-human primate (NHP) stroke model mimicking endovascular thrombectomy (EVT) with a neuroprotective cyclosporine A (CsA) treatment. The NHP underwent a 110-min transient endovascular middle cerebral artery occlusion. We acquired [11C]PK11195 dynamic PET-MR imaging at baseline, 7 and 30 days after intervention. Individual voxel-wise analysis was performed thanks to a baseline scan database. We quantified [11C]PK11195 in anatomical regions and in lesioned areas defined on per-occlusion MR diffusion-weighted imaging and perfusion [15O2]H2OPET imaging. [11C]PK11195 parametric maps showed a clear uptake overlapping the lesion core at D7, which further increased at D30. Voxel-wise analysis identified individuals with significant inflammation at D30, with voxels located within the most severe diffusion reduction area during occlusion, mainly in the putamen. The quantitative analysis revealed that thalamic inflammation lasted until D30 and was significantly reduced in the CsA-treated group compared to the placebo. In conclusion, we showed that chronic inflammation matched ADC decrease at occlusion time, a region exposed to an initial burst of damage-associated molecular patterns, in an NHP stroke model mimicking EVT. We described secondary thalamic inflammation and the protective effect of CsA in this region. We propose that major ADC drop in the putamen during occlusion may identify individuals who could benefit from early personalized treatment targeting inflammation.


Asunto(s)
Isquemia Encefálica , Encefalitis , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/cirugía , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/tratamiento farmacológico , Trombectomía/métodos , Primates , Inflamación/diagnóstico por imagen , Isquemia Encefálica/terapia , Isquemia Encefálica/tratamiento farmacológico , Resultado del Tratamiento
3.
J Cereb Blood Flow Metab ; 41(4): 745-760, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32428423

RESUMEN

Stroke is a devastating disease. Endovascular mechanical thrombectomy is dramatically changing the management of acute ischemic stroke, raising new challenges regarding brain outcome and opening up new avenues for brain protection. In this context, relevant experiment models are required for testing new therapies and addressing important questions about infarct progression despite successful recanalization, reversibility of ischemic lesions, blood-brain barrier disruption and reperfusion damage. Here, we developed a minimally invasive non-human primate model of cerebral ischemia (Macaca fascicularis) based on an endovascular transient occlusion and recanalization of the middle cerebral artery (MCA). We evaluated per-occlusion and post-recanalization impairment on PET-MRI, in addition to acute and chronic neuro-functional assessment. Voxel-based analyses between per-occlusion PET-MRI and day-7 MRI showed two different patterns of lesion evolution: "symptomatic salvaged tissue" (SST) and "asymptomatic infarcted tissue" (AIT). Extended SST was present in all cases. AIT, remote from the area at risk, represented 45% of the final lesion. This model also expresses both worsening of fine motor skills and dysexecutive behavior over the chronic post-stroke period, a result in agreement with cortical-subcortical lesions. We thus fully characterized an original translational model of ischemia-reperfusion damage after stroke, with consistent ischemia time, and thrombus retrieval for effective recanalization.


Asunto(s)
Procedimientos Endovasculares/métodos , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/cirugía , Trombectomía/métodos , Animales , Conducta Animal , Barrera Hematoencefálica , Modelos Animales de Enfermedad , Función Ejecutiva , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/psicología , Macaca fascicularis , Imagen por Resonancia Magnética , Masculino , Destreza Motora , Tomografía de Emisión de Positrones , Daño por Reperfusión , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
4.
Brain Commun ; 2(2): fcaa193, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33305265

RESUMEN

In an acute ischaemic stroke, understanding the dynamics of blood-brain barrier injury is of particular importance for the prevention of symptomatic haemorrhagic transformation. However, the available techniques assessing blood-brain barrier permeability are not quantitative and are little used in the context of acute reperfusion therapy. Nanoparticles cross the healthy or impaired blood-brain barrier through combined passive and active processes. Imaging and quantifying their transfer rate could better characterize blood-brain barrier damage and refine the delivery of neuroprotective agents. We previously developed an original endovascular stroke model of acute ischaemic stroke treated by mechanical thrombectomy followed by positron emission tomography-magnetic resonance imaging. Cerebral capillary permeability was quantified for two molecule sizes: small clinical gadolinium Gd-DOTA (<1 nm) and AGuIX® nanoparticles (∼5 nm) used for brain theranostics. On dynamic contrast-enhanced magnetic resonance imaging, the baseline transfer constant K trans was 0.94 [0.48, 1.72] and 0.16 [0.08, 0.33] ×10-3 min-1, respectively, in the normal brain parenchyma, consistent with their respective sizes, and 1.90 [1.23, 3.95] and 2.86 [1.39, 4.52] ×10-3 min-1 in choroid plexus, confirming higher permeability than brain parenchyma. At early reperfusion, K trans for both Gd-DOTA and AGuIX® nanoparticles was significantly higher within the ischaemic area compared to the contralateral hemisphere; 2.23 [1.17, 4.13] and 0.82 [0.46, 1.87] ×10-3 min-1 for Gd-DOTA and AGuIX® nanoparticles, respectively. With AGuIX® nanoparticles, K trans also increased within the ischaemic growth areas, suggesting added value for AGuIX®. Finally, K trans was significantly lower in both the lesion and the choroid plexus in a drug-treated group (ciclosporin A, n = 7) compared to placebo (n = 5). K trans quantification with AGuIX® nanoparticles can monitor early blood-brain barrier damage and treatment effect in ischaemic stroke after reperfusion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA