Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Gut ; 72(2): 275-294, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35241625

RESUMEN

OBJECTIVE: Increased apoptotic shedding has been linked to intestinal barrier dysfunction and development of inflammatory bowel diseases (IBD). In contrast, physiological cell shedding allows the renewal of the epithelial monolayer without compromising the barrier function. Here, we investigated the role of live cell extrusion in epithelial barrier alterations in IBD. DESIGN: Taking advantage of conditional GGTase and RAC1 knockout mice in intestinal epithelial cells (Pggt1b iΔIEC and Rac1 iΔIEC mice), intravital microscopy, immunostaining, mechanobiology, organoid techniques and RNA sequencing, we analysed cell shedding alterations within the intestinal epithelium. Moreover, we examined human gut tissue and intestinal organoids from patients with IBD for cell shedding alterations and RAC1 function. RESULTS: Epithelial Pggt1b deletion led to cytoskeleton rearrangement and tight junction redistribution, causing cell overcrowding due to arresting of cell shedding that finally resulted in epithelial leakage and spontaneous mucosal inflammation in the small and to a lesser extent in the large intestine. Both in vivo and in vitro studies (knockout mice, organoids) identified RAC1 as a GGTase target critically involved in prenylation-dependent cytoskeleton dynamics, cell mechanics and epithelial cell shedding. Moreover, inflamed areas of gut tissue from patients with IBD exhibited funnel-like structures, signs of arrested cell shedding and impaired RAC1 function. RAC1 inhibition in human intestinal organoids caused actin alterations compatible with arresting of cell shedding. CONCLUSION: Impaired epithelial RAC1 function causes cell overcrowding and epithelial leakage thus inducing chronic intestinal inflammation. Epithelial RAC1 emerges as key regulator of cytoskeletal dynamics, cell mechanics and intestinal cell shedding. Modulation of RAC1 might be exploited for restoration of epithelial integrity in the gut of patients with IBD.


Asunto(s)
Citoesqueleto , Enfermedades Inflamatorias del Intestino , Animales , Humanos , Ratones , Células Epiteliales , Inflamación , Enfermedades Inflamatorias del Intestino/genética , Mucosa Intestinal/fisiología , Ratones Noqueados , Proteína de Unión al GTP rac1
2.
Gastroenterology ; 162(3): 877-889.e7, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34861219

RESUMEN

BACKGROUND & AIMS: Excessive shedding of apoptotic enterocytes into the intestinal lumen is observed in inflammatory bowel disease and is correlated with disease relapse. Based on their cytolytic capacity and surveillance behavior, we investigated whether intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IELs) are actively involved in the shedding of enterocytes into the lumen. METHODS: Intravital microscopy was performed on GFP γδ T cell reporter mice treated with intraperitoneal lipopolysaccharide (10 mg/kg) for 90 minutes to induce tumor necrosis factor-mediated apoptosis. Cell shedding in various knockout or transgenic mice in the presence or absence of blocking antibody was quantified by immunostaining for ZO-1 funnels and cleaved caspase-3 (CC3). Granzyme A and granzyme B release from ex vivo-stimulated γδ IELs was quantified by enzyme-linked immunosorbent assay. Immunostaining for γδ T cell receptor and CC3 was performed on duodenal and ileal biopsies from controls and patients with Crohn's disease. RESULTS: Intravital microscopy of lipopolysaccharide-treated mice revealed that γδ IELs make extended contact with shedding enterocytes. These prolonged interactions require CD103 engagement by E-cadherin, and CD103 knockout or blockade significantly reduced lipopolysaccharide-induced shedding. Furthermore, we found that granzymes A and B, but not perforin, are required for cell shedding. These extracellular granzymes are released by γδ IELs both constitutively and after CD103/E-cadherin ligation. Moreover, we found that the frequency of γδ IEL localization to CC3-positive enterocytes is increased in Crohn's disease biopsies compared with healthy controls. CONCLUSIONS: Our results uncover a previously unrecognized role for γδ IELs in facilitating tumor necrosis factor-mediated shedding of apoptotic enterocytes via CD103-mediated extracellular granzyme release.


Asunto(s)
Antígenos CD/metabolismo , Enfermedad de Crohn/metabolismo , Enterocitos/fisiología , Granzimas/metabolismo , Cadenas alfa de Integrinas/metabolismo , Linfocitos Intraepiteliales/fisiología , Adolescente , Adulto , Animales , Antígenos CD/genética , Apoptosis , Cadherinas/metabolismo , Caspasa 3/metabolismo , Enfermedad de Crohn/patología , Duodeno/patología , Enterocitos/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Íleon/patología , Cadenas alfa de Integrinas/genética , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Linfocitos Intraepiteliales/enzimología , Linfocitos Intraepiteliales/patología , Microscopía Intravital , Yeyuno/inmunología , Yeyuno/patología , Lipopolisacáridos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adulto Joven
3.
FASEB J ; 34(5): 7075-7088, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32253791

RESUMEN

The early life gut microbiota plays a crucial role in regulating and maintaining the intestinal barrier, with disturbances in these communities linked to dysregulated renewal and replenishment of intestinal epithelial cells. Here we sought to determine pathological cell shedding outcomes throughout the postnatal developmental period, and which host and microbial factors mediate these responses. Surprisingly, neonatal mice (Day 14 and 21) were highly refractory to induction of cell shedding after intraperitoneal administration of liposaccharide (LPS), with Day 29 mice showing strong pathological responses, more similar to those observed in adult mice. These differential responses were not linked to defects in the cellular mechanisms and pathways known to regulate cell shedding responses. When we profiled microbiota and metabolites, we observed significant alterations. Neonatal mice had high relative abundances of Streptococcus, Escherichia, and Enterococcus and increased primary bile acids. In contrast, older mice were dominated by Candidatus Arthromitus, Alistipes, and Lachnoclostridium, and had increased concentrations of SCFAs and methyamines. Antibiotic treatment of neonates restored LPS-induced small intestinal cell shedding, whereas adult fecal microbiota transplant alone had no effect. Our findings further support the importance of the early life window for microbiota-epithelial interactions in the presence of inflammatory stimuli and highlights areas for further investigation.


Asunto(s)
Animales Recién Nacidos/microbiología , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Animales , Animales Recién Nacidos/metabolismo , Antibacterianos/administración & dosificación , Ácidos y Sales Biliares/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Trasplante de Microbiota Fecal , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/fisiología , Inflamación/metabolismo , Inflamación/microbiología , Inflamación/patología , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Intestino Delgado/patología , Lipopolisacáridos/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
4.
Gut ; 69(2): 252-263, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31092589

RESUMEN

OBJECTIVE: To study the role of α4ß7 integrin for gut homing of monocytes and to explore the biological consequences of therapeutic α4ß7 inhibition with regard to intestinal wound healing. DESIGN: We studied the expression of homing markers on monocyte subsets in the peripheral blood and on macrophage subsets in the gut of patients with IBD and controls with flow cytometry and immunohistochemistry. Integrin function was addressed with dynamic adhesion assays and in vivo gut homing assays. In vivo wound healing was studied in mice deficient for or depleted of α4ß7 integrin. RESULTS: Classical and non-classical monocytes were clearly dichotomous regarding homing marker expression including relevant expression of α4ß7 integrin on human and mouse non-classical monocytes but not on classical monocytes. Monocyte-expressed α4ß7 integrin was functionally important for dynamic adhesion to mucosal vascular addressin cell adhesion molecule 1 and in vivo gut homing. Impaired α4ß7-dependent gut homing was associated with reduced (effect size about 20%) and delayed wound healing and suppressed perilesional presence of wound healing macrophages. Non-classical monocytes in the peripheral blood were increased in patients with IBD under clinical treatment with vedolizumab. CONCLUSION: In addition to reported effects on lymphocytes, anti-α4ß7 therapy in IBD also targets non-classical monocytes. Impaired gut homing of such monocytes might lead to a reduction of wound healing macrophages and could potentially explain increased rates of postoperative complications in vedolizumab-treated patients, which have been observed in some studies.


Asunto(s)
Enfermedades Inflamatorias del Intestino/patología , Integrinas/fisiología , Intestinos/patología , Monocitos/fisiología , Cicatrización de Heridas/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Estudios de Casos y Controles , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Quimiotaxis de Leucocito/fisiología , Femenino , Fármacos Gastrointestinales/farmacología , Humanos , Enfermedades Inflamatorias del Intestino/sangre , Enfermedades Inflamatorias del Intestino/fisiopatología , Integrinas/antagonistas & inhibidores , Integrinas/sangre , Mucosa Intestinal/metabolismo , Intestinos/fisiología , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Monocitos/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Adulto Joven
5.
Gut ; 68(11): 1971-1978, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31427405

RESUMEN

BACKGROUND: Microbiome dysbiosis predisposes to colorectal cancer (CRC), but a population-based study of oral antibiotic exposure and risk patterns is lacking. OBJECTIVE: To assess the association between oral antibiotic use and CRC risk. DESIGN: A matched case-control study (incident CRC cases and up to five matched controls) was performed using the Clinical Practice Research Datalink from 1989 to 2012. RESULTS: 28 980 CRC cases and 137 077 controls were identified. Oral antibiotic use was associated with CRC risk, but effects differed by anatomical location. Antibiotic use increased the risk of colon cancer in a dose-dependent fashion (ptrend <0.001). The risk was observed after minimal use, and was greatest in the proximal colon and with antibiotics with anti-anaerobic activity. In contrast, an inverse association was detected between antibiotic use and rectal cancers (ptrend=0.003), particularly with length of antibiotic exposure >60 days (adjusted OR (aOR), 0.85, 95% CI 0.79 to 0.93) as compared with no antibiotic exposure. Penicillins, particularly ampicillin/amoxicillin increased the risk of colon cancer (aOR=1.09 (1.05 to 1.13)), whereas tetracyclines reduced the risk of rectal cancer (aOR=0.90 (0.84 to 0.97)). Significant interactions were detected between antibiotic use and tumour location (colon vs rectum, pinteraction<0.001; proximal colon versus distal colon, pinteraction=0.019). The antibiotic-cancer association was found for antibiotic exposure occurring >10 years before diagnosis (aOR=1.17 (1.06 to 1.31)). CONCLUSION: Oral antibiotic use is associated with an increased risk of colon cancer but a reduced risk of rectal cancer. This effect heterogeneity may suggest differences in gut microbiota and carcinogenesis mechanisms along the lower intestinal tract.


Asunto(s)
Antibacterianos/uso terapéutico , Neoplasias Colorrectales/epidemiología , Administración Oral , Anciano , Estudios de Casos y Controles , Neoplasias Colorrectales/diagnóstico , Bases de Datos Factuales , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Medición de Riesgo , Reino Unido
6.
J Cell Sci ; 130(1): 90-96, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27026527

RESUMEN

Cell shedding from the intestinal villus is a key element of tissue turnover that is essential to maintain health and homeostasis. However, the signals regulating this process are not well understood. We asked whether shedding is controlled by epidermal growth factor receptor (EGFR), an important driver of intestinal growth and differentiation. In 3D ileal enteroid culture and cell culture models (MDCK, IEC-6 and IPEC-J2 cells), extrusion events were suppressed by EGF, as determined by direct counting of released cells or rhodamine-phalloidin labeling of condensed actin rings. Blockade of the MEK-ERK pathway, but not other downstream pathways such as phosphoinositide 3-kinase (PI3K) or protein kinase C (PKC), reversed EGF inhibition of shedding. These effects were not due to a change in cell viability. Furthermore, EGF-driven MAPK signaling inhibited both caspase-independent and -dependent shedding pathways. Similar results were found in vivo, in a novel zebrafish model for intestinal epithelial shedding. Taken together, the data show that EGF suppresses cell shedding in the intestinal epithelium through a selective MAPK-dependent pathway affecting multiple extrusion mechanisms. EGFR signaling might be a therapeutic target for disorders featuring excessive cell turnover, such as inflammatory bowel diseases.


Asunto(s)
Factor de Crecimiento Epidérmico/farmacología , Células Epiteliales/metabolismo , Intestinos/citología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Animales , Inhibidores de Caspasas/farmacología , Caspasas/metabolismo , Perros , Células Epiteliales/efectos de los fármacos , Células de Riñón Canino Madin Darby , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pez Cebra , Proteínas de Unión al GTP rho/metabolismo
7.
FASEB J ; 31(2): 636-649, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27811059

RESUMEN

The functional integrity of the intestinal epithelial barrier relies on tight coordination of cell proliferation and migration, with failure to regulate these processes resulting in disease. It is not known whether cell proliferation is sufficient to drive epithelial cell migration during homoeostatic turnover of the epithelium. Nor is it known precisely how villus cell migration is affected when proliferation is perturbed. Some reports suggest that proliferation and migration may not be related while other studies support a direct relationship. We used established cell-tracking methods based on thymine analog cell labeling and developed tailored mathematical models to quantify cell proliferation and migration under normal conditions and when proliferation is reduced and when it is temporarily halted. We found that epithelial cell migration velocities along the villi are coupled to cell proliferation rates within the crypts in all conditions. Furthermore, halting and resuming proliferation results in the synchronized response of cell migration on the villi. We conclude that cell proliferation within the crypt is the primary force that drives cell migration along the villus. This methodology can be applied to interrogate intestinal epithelial dynamics and characterize situations in which processes involved in cell turnover become uncoupled, including pharmacological treatments and disease models.-Parker, A., Maclaren, O. J., Fletcher, A. G., Muraro, D., Kreuzaler, P. A., Byrne, H. M., Maini, P. K., Watson, A. J. M., Pin, C. Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi.


Asunto(s)
Movimiento Celular/fisiología , Intestino Delgado/citología , Animales , Antimetabolitos Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular , Citarabina/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
8.
PLoS Comput Biol ; 13(7): e1005688, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28753601

RESUMEN

Our work addresses two key challenges, one biological and one methodological. First, we aim to understand how proliferation and cell migration rates in the intestinal epithelium are related under healthy, damaged (Ara-C treated) and recovering conditions, and how these relations can be used to identify mechanisms of repair and regeneration. We analyse new data, presented in more detail in a companion paper, in which BrdU/IdU cell-labelling experiments were performed under these respective conditions. Second, in considering how to more rigorously process these data and interpret them using mathematical models, we use a probabilistic, hierarchical approach. This provides a best-practice approach for systematically modelling and understanding the uncertainties that can otherwise undermine the generation of reliable conclusions-uncertainties in experimental measurement and treatment, difficult-to-compare mathematical models of underlying mechanisms, and unknown or unobserved parameters. Both spatially discrete and continuous mechanistic models are considered and related via hierarchical conditional probability assumptions. We perform model checks on both in-sample and out-of-sample datasets and use them to show how to test possible model improvements and assess the robustness of our conclusions. We conclude, for the present set of experiments, that a primarily proliferation-driven model suffices to predict labelled cell dynamics over most time-scales.


Asunto(s)
Biología Computacional/métodos , Mucosa Intestinal/fisiología , Modelos Biológicos , Modelos Estadísticos , Animales , Teorema de Bayes , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Ratones
9.
Gut ; 64(4): 601-10, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25379949

RESUMEN

OBJECTIVES: Intestinal epithelial cells (IEC) express toll-like receptors (TLR) that facilitate microbial recognition. Stimulation of TLR ligands induces a transient increase in epithelial cell shedding, a mechanism that serves the antibacterial and antiviral host defence of the epithelium and promotes elimination of intracellular pathogens. Although activation of the extrinsic apoptosis pathway has been described during inflammatory shedding, its functional involvement is currently unclear. DESIGN: We investigated the functional involvement of caspase-8 signalling in microbial-induced intestinal cell shedding by injecting Lipopolysaccharide (LPS) to mimic bacterial pathogens and poly(I:C) as a probe for RNA viruses in vivo. RESULTS: TLR stimulation of IEC was associated with a rapid activation of caspase-8 and increased epithelial cell shedding. In mice with an epithelial cell-specific deletion of caspase-8 TLR stimulation caused Rip3-dependent epithelial necroptosis instead of apoptosis. Mortality and tissue damage were more severe in mice in which IECs died by necroptosis than apoptosis. Inhibition of receptor-interacting protein (Rip) kinases rescued the epithelium from TLR-induced gut damage. TLR3-induced necroptosis was directly mediated via TRIF-dependent pathways, independent of Tnf-α and type III interferons, whereas TLR4-induced tissue damage was critically dependent on Tnf-α. CONCLUSIONS: Together, our data demonstrate an essential role for caspase-8 in maintaining the gut barrier in response to mucosal pathogens by permitting inflammatory shedding and preventing necroptosis of infected cells. These data suggest that therapeutic strategies targeting the cell death machinery represent a promising new option for the treatment of inflammatory and infective enteropathies.


Asunto(s)
Caspasa 8/fisiología , Células Epiteliales/fisiología , Mucosa Intestinal/microbiología , Mucosa Intestinal/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Animales , Ratones , Transducción de Señal
13.
Clin Sci (Lond) ; 129(7): 515-27, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25948052

RESUMEN

The physical and immunological properties of the human intestinal epithelial barrier in aging are largely unknown. Ileal biopsies from young (7-12 years), adult (20-40 years) and aging (67-77 years) individuals not showing symptoms of gastrointestinal (GI) pathologies were used to assess levels of inflammatory cytokines, barrier integrity and cytokine production in response to microbial challenges. Increased expression of interleukin (IL)-6, but not interferon (IFN)γ, tumour necrosis factor (TNF)-α and IL-1ß was observed during aging; further analysis showed that cluster of differentiation (CD)11c(+) dendritic cells (DCs) are one of the major sources of IL-6 in the aging gut and expressed higher levels of CD40. Up-regulated production of IL-6 was accompanied by increased expression of claudin-2 leading to reduced transepithelial electric resistance (TEER); TEER could be restored in in vitro and ex vivo cultures by neutralizing anti-IL-6 antibody. In contrast, expression of zonula occludens-1 (ZO-1), occludin and junctional-adhesion molecule-A1 did not vary with age and overall permeability to macromolecules was not affected. Finally, cytokine production in response to different microbial stimuli was assessed in a polarized in vitro organ culture (IVOC). IL-8 production in response to flagellin declined progressively with age although the expression and distribution of toll-like receptor (TLR)-5 on intestinal epithelial cells (IECs) remained unchanged. Also, flagellin-induced production of IL-6 was less pronounced in aging individuals. In contrast, TNF-α production in response to probiotics (VSL#3) did not decline with age; however, in our experimental model probiotics did not down-regulate the production of IL-6 and expression of claudin-2. These data suggested that aging affects properties of the intestinal barrier likely to impact on age-associated disturbances, both locally and systemically.


Asunto(s)
Factores de Edad , Regulación de la Expresión Génica , Íleon/metabolismo , Inmunidad Innata , Adulto , Anciano , Biopsia , Células CACO-2 , Niño , Medios de Cultivo Condicionados/química , Citocinas/metabolismo , Células Dendríticas/metabolismo , Impedancia Eléctrica , Endoscopía , Epitelio/metabolismo , Perfilación de la Expresión Génica , Humanos , Técnicas de Cultivo de Órganos , Adulto Joven
17.
Biochem Biophys Res Commun ; 440(3): 364-70, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23998936

RESUMEN

Colorectal cancer (CRC) is the fourth most common cause of cancer-related death worldwide. Accurate non-invasive screening for CRC would greatly enhance a population's health. Adenomatous polyposis coli (Apc) gene mutations commonly occur in human colorectal adenomas and carcinomas, leading to Wnt signalling pathway activation. Acute conditional transgenic deletion of Apc in murine intestinal epithelium (AhCre(+)Apc(fl)(/)(fl)) causes phenotypic changes similar to those found during colorectal tumourigenesis. This study comprised a proteomic analysis of murine small intestinal epithelial cells following acute Apc deletion to identify proteins that show altered expression during human colorectal carcinogenesis, thus identifying proteins that may prove clinically useful as blood/serum biomarkers of colorectal neoplasia. Eighty-one proteins showed significantly increased expression following iTRAQ analysis, and validation of nine of these by Ingenuity Pathaway Analysis showed they could be detected in blood or serum. Expression was assessed in AhCre(+)Apc(fl)(/)(fl) small intestinal epithelium by immunohistochemistry, western blot and quantitative real-time PCR; increased nucelolin concentrations were also detected in the serum of AhCre(+)Apc(fl)(/)(fl) and Apc(Min)(/)(+) mice by ELISA. Six proteins; heat shock 60kDa protein 1, Nucleolin, Prohibitin, Cytokeratin 18, Ribosomal protein L6 and DEAD (Asp-Glu-Ala-Asp) box polypeptide 5,were selected for further investigation. Increased expression of 4 of these was confirmed in human CRC by qPCR. In conclusion, several novel candidate biomarkers have been identified from analysis of transgenic mice in which the Apc gene was deleted in the intestinal epithelium that also showed increased expression in human CRC. Some of these warrant further investigation as potential serum-based biomarkers of human CRC.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Animales , Biomarcadores de Tumor/sangre , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/patología , Eliminación de Gen , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiología , Ratones , Ratones Transgénicos , Prohibitinas , Proteómica
19.
Gastroenterology ; 140(4): 1208-1218.e1-2, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21237166

RESUMEN

BACKGROUND & AIMS: Tumor necrosis factor (TNF) increases intestinal epithelial cell shedding and apoptosis, potentially challenging the barrier between the gastrointestinal lumen and internal tissues. We investigated the mechanism of tight junction remodeling and barrier maintenance as well as the roles of cytoskeletal regulatory molecules during TNF-induced shedding. METHODS: We studied wild-type and transgenic mice that express the fluorescent-tagged proteins enhanced green fluorescent protein-occludin or monomeric red fluorescent protein 1-ZO-1. After injection of high doses of TNF (7.5 µg intraperitoneally), laparotomies were performed and segments of small intestine were opened to visualize the mucosa by video confocal microscopy. Pharmacologic inhibitors and knockout mice were used to determine the roles of caspase activation, actomyosin, and microtubule remodeling and membrane trafficking in epithelial shedding. RESULTS: Changes detected included redistribution of the tight junction proteins ZO-1 and occludin to lateral membranes of shedding cells. These proteins ultimately formed a funnel around the shedding cell that defined the site of barrier preservation. Claudins, E-cadherin, F-actin, myosin II, Rho-associated kinase (ROCK), and myosin light chain kinase (MLCK) were also recruited to lateral membranes. Caspase activity, myosin motor activity, and microtubules were required to initiate shedding, whereas completion of the process required microfilament remodeling and ROCK, MLCK, and dynamin II activities. CONCLUSIONS: Maintenance of the epithelial barrier during TNF-induced cell shedding is a complex process that involves integration of microtubules, microfilaments, and membrane traffic to remove apoptotic cells. This process is accompanied by redistribution of apical junctional complex proteins to form intercellular barriers between lateral membranes and maintain mucosal function.


Asunto(s)
Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Uniones Estrechas/metabolismo , Uniones Estrechas/patología , Citoesqueleto de Actina/metabolismo , Animales , Apoptosis/fisiología , Caspasas/metabolismo , Dinamina II/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteínas Fluorescentes Verdes/genética , Mucosa Intestinal/efectos de los fármacos , Proteínas Luminiscentes/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microtúbulos/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Ocludina , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transporte de Proteínas/fisiología , Uniones Estrechas/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Proteína de la Zonula Occludens-1 , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Proteína Fluorescente Roja
20.
Gut ; 60(1): 26-33, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20980342

RESUMEN

BACKGROUND AND OBJECTIVES: Interaction of bacteria with the immune system within the intestinal mucosa plays a key role in the pathogenesis of inflammatory bowel disease (IBD). The aim of the current study was to develop a fluorescein-aided confocal laser endomicroscopy (CLE) method to visualise intramucosal enteric bacteria in vivo and to determine the involved mucosal area in the colon and ileum in patients with ulcerative colitis (UC) and Crohn's disease (CD). METHODS: Initially, E coli strains expressing enhanced green fluorescent protein (pEGFP) were endomicroscopically imaged in mice. In addition, ex vivo and in vivo imaging of fluorescent human enteric bacteria was performed to specify the distinct endomicroscopic appearance of enteral bacteria. Targeted mucosal biopsies towards endomicroscopic identifiable intramucosal bacteria and negative mucosal areas were prospectively obtained during colonoscopy and correlated with bench-top fluorescence microscopy (FISH) to prove the endomicroscopic visualisation of intramucosal bacteria. Finally, a retrospective analysis as well as a prospective study was performed in patients with UC and CD to confirm the presence and distribution of intramucosal bacteria within the gut. RESULTS: Confocal endomicroscopy was able to identify intramucosal pEGFP E coli in mice and strains of enteric microflora in the mucosa of humans. Using FISH as the gold standard, evaluation of 21 patients showed that CLE had a sensitivity of 89% and specificity of 100% to identify intramucosal bacteria. In a retrospective study, 113 patients with CD and UC had intramucosal bacteria significantly more often than 50 control patients (66% vs 60% vs 14%, p<0.001). This result was confirmed in a prospective study in which 10 patients with CD and 10 with UC had a significantly wider distribution of involvement with intramucosal bacteria in the colon and terminal ileum compared with 10 controls (85.2% vs 75.9% vs 16.8%, p<0.0001). CONCLUSIONS: CLE is a new tool that can image intramucosal bacteria in vivo in patients with IBD. Intramucosal bacteria are found more frequently and with a wider distribution in patients with IBD than in patients with a normal intestine.


Asunto(s)
Enterobacteriaceae/aislamiento & purificación , Enfermedades Inflamatorias del Intestino/microbiología , Mucosa Intestinal/microbiología , Microscopía Confocal/métodos , Animales , Colitis Ulcerosa/microbiología , Colon/microbiología , Colonoscopía , Enfermedad de Crohn/microbiología , Escherichia coli/aislamiento & purificación , Humanos , Íleon/microbiología , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Estudios Prospectivos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA