Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Infect Dis ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690892

RESUMEN

BACKGROUND: Metformin has antiviral activity against RNA viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The mechanism appears to be suppression of protein translation via targeting the host mechanistic target of rapamycin pathway. In the COVID-OUT randomized trial for outpatient coronavirus disease 2019 (COVID-19), metformin reduced the odds of hospitalizations/death through 28 days by 58%, of emergency department visits/hospitalizations/death through 14 days by 42%, and of long COVID through 10 months by 42%. METHODS: COVID-OUT was a 2 × 3 randomized, placebo-controlled, double-blind trial that assessed metformin, fluvoxamine, and ivermectin; 999 participants self-collected anterior nasal swabs on day 1 (n = 945), day 5 (n = 871), and day 10 (n = 775). Viral load was quantified using reverse-transcription quantitative polymerase chain reaction. RESULTS: The mean SARS-CoV-2 viral load was reduced 3.6-fold with metformin relative to placebo (-0.56 log10 copies/mL; 95% confidence interval [CI], -1.05 to -.06; P = .027). Those who received metformin were less likely to have a detectable viral load than placebo at day 5 or day 10 (odds ratio [OR], 0.72; 95% CI, .55 to .94). Viral rebound, defined as a higher viral load at day 10 than day 5, was less frequent with metformin (3.28%) than placebo (5.95%; OR, 0.68; 95% CI, .36 to 1.29). The metformin effect was consistent across subgroups and increased over time. Neither ivermectin nor fluvoxamine showed effect over placebo. CONCLUSIONS: In this randomized, placebo-controlled trial of outpatient treatment of SARS-CoV-2, metformin significantly reduced SARS-CoV-2 viral load, which may explain the clinical benefits in this trial. Metformin is pleiotropic with other actions that are relevant to COVID-19 pathophysiology. CLINICAL TRIALS REGISTRATION: NCT04510194.

2.
BMC Genomics ; 21(1): 863, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33276717

RESUMEN

BACKGROUND: The global COVID-19 pandemic has led to an urgent need for scalable methods for clinical diagnostics and viral tracking. Next generation sequencing technologies have enabled large-scale genomic surveillance of SARS-CoV-2 as thousands of isolates are being sequenced around the world and deposited in public data repositories. A number of methods using both short- and long-read technologies are currently being applied for SARS-CoV-2 sequencing, including amplicon approaches, metagenomic methods, and sequence capture or enrichment methods. Given the small genome size, the ability to sequence SARS-CoV-2 at scale is limited by the cost and labor associated with making sequencing libraries. RESULTS: Here we describe a low-cost, streamlined, all amplicon-based method for sequencing SARS-CoV-2, which bypasses costly and time-consuming library preparation steps. We benchmark this tailed amplicon method against both the ARTIC amplicon protocol and sequence capture approaches and show that an optimized tailed amplicon approach achieves comparable amplicon balance, coverage metrics, and variant calls to the ARTIC v3 approach. CONCLUSIONS: The tailed amplicon method we describe represents a cost-effective and highly scalable method for SARS-CoV-2 sequencing.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/virología , Genoma Viral/genética , SARS-CoV-2/genética , Benchmarking , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de Ácido Nucleico para COVID-19/normas , Humanos , Epidemiología Molecular , Mutación , ARN Viral/genética , SARS-CoV-2/aislamiento & purificación , Análisis de Secuencia/métodos , Análisis de Secuencia/normas
3.
Am J Bot ; 101(10): 1748-58, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25326617

RESUMEN

UNLABELLED: • PREMISE OF THE STUDY: Evolutionary changes in how flowering time responds to photoperiod cues have been instrumental in expanding the geographic range of agricultural production for many crop species. Locally adaptive natural variation in photoperiod response present in wild relatives of crop plants could be leveraged to further improve the present and future climatic ranges of cultivation or to increase region-specific yields. Previous work has demonstrated ample variability in photoperiod response among wild populations of the common sunflower, Helianthus annuus. Here, we characterize patterns of photoperiod response variation throughout the genus and examine the genetic architecture of intraspecific divergence.• METHODS: The requirement of short day lengths for floral induction was characterized for a phylogenetically dispersed sample of Helianthus species. In addition, flowering time was assessed under short days and long days for a population of F3 individuals derived from crosses between day-neutral and short-day, wild H. annuus parents.• KEY RESULTS: An obligate requirement for short-day induced flowering has evolved repeatedly in Helianthus, and this character was correlated with geographic ranges restricted to the southern United States. Parental flowering times under long days were recovered in high proportion in the F3 generation.• CONCLUSIONS: Together, these findings (1) reveal that substantial variation in the nature of flowering time responses to photoperiod cues has arisen during the evolution of wild sunflowers and (2) suggest these transitions may be largely characterized by simple genetic architectures. Thus, introgression of wild alleles may be a tractable means of genetically tailoring sunflower cultivars for climate-specific production.


Asunto(s)
Evolución Biológica , Flores/crecimiento & desarrollo , Sitios Genéticos , Variación Genética , Helianthus/genética , Fotoperiodo , Filogenia , Alelos , Clima , Productos Agrícolas/genética , Genes de Plantas , Genotipo , Geografía , Helianthus/crecimiento & desarrollo , Fenotipo , Sitios de Carácter Cuantitativo , Estados Unidos
4.
medRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37333243

RESUMEN

Current antiviral treatment options for SARS-CoV-2 infections are not available globally, cannot be used with many medications, and are limited to virus-specific targets.1-3 Biophysical modeling of SARS-CoV-2 replication predicted that protein translation is an especially attractive target for antiviral therapy.4 Literature review identified metformin, widely known as a treatment for diabetes, as a potential suppressor of protein translation via targeting of the host mTor pathway.5 In vitro, metformin has antiviral activity against RNA viruses including SARS-CoV-2.6,7 In the COVID-OUT phase 3, randomized, placebo-controlled trial of outpatient treatment of COVID-19, metformin had a 42% reduction in ER visits/hospitalizations/death through 14 days; a 58% reduction in hospitalizations/death through 28 days, and a 42% reduction in Long COVID through 10 months.8,9 Here we show viral load analysis of specimens collected in the COVID-OUT trial that the mean SARS-CoV-2 viral load was reduced 3.6-fold with metformin relative to placebo (-0.56 log10 copies/mL; 95%CI, -1.05 to -0.06, p=0.027) while there was no virologic effect for ivermectin or fluvoxamine vs placebo. The metformin effect was consistent across subgroups and with emerging data.10,11 Our results demonstrate, consistent with model predictions, that a safe, widely available,12 well-tolerated, and inexpensive oral medication, metformin, can be repurposed to significantly reduce SARS-CoV-2 viral load.

5.
Evol Appl ; 12(1): 38-53, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30622634

RESUMEN

Here, we report a comprehensive paleogenomic study of archaeological and ethnographic sunflower remains that provides significant new insights into the process of domestication of this important crop. DNA from both ancient and historic contexts yielded high proportions of endogenous DNA, and although archaeological DNA was found to be highly degraded, it still provided sufficient coverage to analyze genetic changes over time. Shotgun sequencing data from specimens from the Eden's Bluff archaeological site in Arkansas yielded organellar DNA sequence from specimens up to 3,100 years old. Their sequences match those of modern cultivated sunflowers and are consistent with an early domestication bottleneck in this species. Our findings also suggest that recent breeding of sunflowers has led to a loss of genetic diversity that was present only a century ago in Native American landraces. These breeding episodes also left a profound signature on the mitochondrial and plastid haplotypes in cultivars, as two types were intentionally introduced from other Helianthus species for crop improvement. These findings gained from ancient and historic sunflower specimens underscore how future in-depth gene-based analyses can advance our understanding of the pace and targets of selection during the domestication of sunflower and other crop species.

6.
Ecol Evol ; 8(15): 7688-7696, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30151182

RESUMEN

Flowering and germination time are components of phenology, a complex phenotype that incorporates a number of traits. In natural populations, selection is likely to occur on multiple components of phenology at once. However, we have little knowledge of how joint selection on several phenological traits influences evolutionary response. We conducted one generation of artificial selection for all combinations of early and late germination and flowering on replicated lines within two independent base populations in the herb Campanula americana. We then measured response to selection and realized heritability for each trait. Response to selection and heritability were greater for flowering time than germination time, indicating greater evolutionary potential of this trait. Selection for earlier phenology, both flowering and germination, did not depend on the direction of selection on the other trait, whereas response to selection to delay germination and flowering was greater when selection on the other trait was in the opposite direction (e.g., early germination and late flowering), indicating a negative genetic correlation between the traits. Therefore, the extent to which correlations shaped response to selection depended on the direction of selection. Furthermore, the genetic correlation between timing of germination and flowering varies across the trait distributions. The negative correlation between germination and flowering time found when selecting for delayed phenology follows theoretical predictions of constraint for traits that jointly determine life history schedule. In contrast, the lack of constraint found when selecting for an accelerated phenology suggests a reduction of the covariance due to strong selection favoring earlier flowering and a shorter life cycle. This genetic architecture, in turn, will facilitate further evolution of the early phenology often favored in warm climates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA