Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neurotrauma ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38482809

RESUMEN

Neurophysiological diaschisis presents in traumatic brain injury (TBI) as functional impairment distant to the lesion site caused by axonal neuroexcitation and deafferentation. Diaschisis studies in TBI models have evaluated acute phase functional and microstructural changes. Here, in vivo biochemical changes and cerebral blood flow (CBF) dynamics following TBI are studied with magnetic resonance. Behavioral assessments, magnetic resonance spectroscopy (MRS), and CBF measurements on rats followed cortical impact TBI. Data were acquired pre-TBI and 1-3 h, 2-days, 7-days, and 14-days post-TBI. MRS was performed on the ipsilateral and contralateral sides in the cortex, striatum, and thalamus. Metabolites measured by MRS included N-acetyl aspartate (NAA), aspartate (Asp), lactate (Lac), glutathione (GSH), and glutamate (Glu). Lesion volume expanded for 2 days post-TBI and then decreased. Ipsilateral CBF dropped acutely versus baseline on both sides (-62% ipsilateral, -48% contralateral, p < 0.05) but then recovered in cortex, with similar changes in ipsilateral striatum. Metabolic changes versus baseline included increased Asp (+640% by Day 7 post-TBI, p < 0.05) and Lac (+140% on Day 2 post-TBI, p < 0.05) in ipsilateral cortex, while GSH (-67% acutely, p < 0.05) and NAA decreased (-50% on Day 2, p < 0.05). In contralateral cortex Lac decreased (-73% acutely, p < 0.05). Analysis of variance showed significance for Side (p < 0.05), Time after TBI (p < 0.05), and interactions (p < 0.005) for Asp, GSH, Lac, and NAA. Transient decreases of GSH (-30%, p < 0.05, acutely) and NAA (-23% on Day 2, p < 0.05) occurred in ipsilateral striatum with reduced GSH (-42%, p < 0.005, acutely) in the contralateral striatum. GSH was decreased in ipsilateral thalamus (-59% ipsilateral on Day 2, p < 0.05). Delayed increases of total choline were seen in the contralateral thalamus were noted as well (+21% on Day 7 post-TBI, p < 0.05). Both CBF and neurometabolite concentration changes occurred remotely from the TBI site, both ipsilaterally and contralaterally. Decreased Lac levels on the contralateral cortex following TBI may be indicative of reduced anaerobic metabolism during the acute phase. The timing and locations of the changes suggest excitatory and inhibitory signaling processes are affecting post-TBI metabolic fluctuations.

2.
Proc Natl Acad Sci U S A ; 105(48): 18976-81, 2008 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19033200

RESUMEN

Mood disorders cause much suffering and are the single greatest cause of lost productivity worldwide. Although multiple medications, along with behavioral therapies, have proven effective for some individuals, millions of people lack an effective therapeutic option. A common serotonin (5-HT) transporter (5-HTT/SERT, SLC6A4) polymorphism is believed to confer lower 5-HTT expression in vivo and elevates risk for multiple mood disorders including anxiety, alcoholism, and major depression. Importantly, this variant is also associated with reduced responsiveness to selective 5-HT reuptake inhibitor antidepressants. We hypothesized that a reduced antidepressant response in individuals with a constitutive reduction in 5-HTT expression could arise because of the compensatory expression of other genes that inactivate 5-HT in the brain. A functionally upregulated alternate transporter for 5-HT may prevent extracellular 5-HT from rising to levels sufficiently high enough to trigger the adaptive neurochemical events necessary for therapeutic benefit. Here we demonstrate that expression of the organic cation transporter type 3 (OCT3, SLC22A3), which also transports 5-HT, is upregulated in the brains of mice with constitutively reduced 5-HTT expression. Moreover, the OCT blocker decynium-22 diminishes 5-HT clearance and exerts antidepressant-like effects in these mice but not in WT animals. OCT3 may be an important transporter mediating serotonergic signaling when 5-HTT expression or function is compromised.


Asunto(s)
Espacio Extracelular/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Serotonina/metabolismo , Animales , Antidepresivos/metabolismo , Genotipo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Transducción de Señal/fisiología
3.
Shock ; 52(2): 240-248, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-29953417

RESUMEN

The microbiome is defined as the collective genomes of the microbes (composed of bacteria, bacteriophage, fungi, protozoa, and viruses) that colonize the human body, and alterations have been associated with a number of disease states. Changes in gut commensals can influence the neurologic system via the brain-gut axis, and systemic insults such as trauma or traumatic brain injury (TBI) may alter the gut microbiome. The objective of this study was to evaluate the gut microbiome in a preclinical TBI cortical impact model. Male rats underwent craniotomy and randomized to a sham group (n = 4), or a moderate TBI (n = 10) using a pneumatic impactor. MRI and behavioral assessments were performed pre-TBI and on days 2, 7, and 14 days thereafter. Microbiome composition was determined with 16s rRNA sequencing from fecal sample DNA pre-TBI and 2 hrs, 1, 3, and 7 days afterward. Alpha- and ß-bacterial diversity, as well as organizational taxonomic units (OTUs), were determined. Significant changes in the gut microbiome were evident as early as 2 h after TBI as compared with pre-injured samples and sham rats. While there were varying trends among the phylogenetic families across time, some changes persisted through 7 days in the absence of therapeutic intervention. While large structural lesions and behavioral deficits were apparent post-TBI, there were modest but significant decreases in α-diversity. Moreover, both changes in representative phyla and α-diversity measures were significantly correlated with MRI-determined lesion volume. These results suggest that changes in the microbiome may represent a novel biomarker to stage TBI severity and predict functional outcome.


Asunto(s)
Lesiones Traumáticas del Encéfalo/microbiología , Microbioma Gastrointestinal/fisiología , Análisis de Varianza , Animales , Microbioma Gastrointestinal/genética , Masculino , Análisis de Componente Principal , ARN Ribosómico 16S/genética , Ratas , Factores de Tiempo
4.
Neural Regen Res ; 11(1): 15-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26981069

RESUMEN

Traumatic brain injury is a major cause of death and disability. This is a brief report based on a symposium presentation to the 2014 Chinese Neurotrauma Association Meeting in San Francisco, USA. It covers the work from our laboratory in applying multimodal MRI to study experimental traumatic brain injury in rats with comparisons made to behavioral tests and histology. MRI protocols include structural, perfusion, manganese-enhanced, diffusion-tensor MRI, and MRI of blood-brain barrier integrity and cerebrovascular reactivity.

5.
J Cereb Blood Flow Metab ; 35(11): 1852-61, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26104285

RESUMEN

This study investigated the effects of perturbed cerebral blood flow (CBF) and cerebrovascular reactivity (CR) on relaxation time constant (T2), apparent diffusion coefficient (ADC), fractional anisotropy (FA), and behavioral scores at 1 and 3 hours, 2, 7, and 14 days after traumatic brain injury (TBI) in rats. Open-skull TBI was induced over the left primary forelimb somatosensory cortex (N=8 and 3 sham). We found the abnormal areas of CBF and CR on days 0 and 2 were larger than those of the T2, ADC, and FA abnormalities. In the impact core, CBF was reduced on day 0, increased to 2.5 times of normal on day 2, and returned toward normal by day 14, whereas in the tissue surrounding the impact, hypoperfusion was observed on days 0 and 2. CR in the impact core was negative, most severe on day 2 but gradually returned toward normal. T2, ADC, and FA abnormalities in the impact core were detected on day 0, peaked on day 2, and pseudonormalized by day 14. Lesion volumes peaked on day 2 and were temporally correlated with forelimb asymmetry and foot-fault scores. This study quantified the effects of perturbed CBF and CR on structural magnetic resonance imaging and behavioral readouts.


Asunto(s)
Conducta Animal , Lesiones Encefálicas/patología , Lesiones Encefálicas/psicología , Circulación Cerebrovascular , Trastornos Cerebrovasculares/patología , Trastornos Cerebrovasculares/psicología , Animales , Imagen de Difusión Tensora , Vías Eferentes/patología , Miembro Anterior/inervación , Hipercapnia/patología , Hipercapnia/psicología , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Proteínas del Tejido Nervioso/metabolismo , Ratas , Ratas Sprague-Dawley , Corteza Somatosensorial/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA