Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 43(22): 10821-30, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26578567

RESUMEN

CRISPR-Cas is a prokaryotic immune system built from capture and integration of invader DNA into CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, termed 'Adaptation', which is dependent on Cas1 and Cas2 proteins. In Escherichia coli, Cascade-Cas3 degrades invader DNA to effect immunity, termed 'Interference'. Adaptation can interact with interference ('primed'), or is independent of it ('naïve'). We demonstrate that primed adaptation requires the RecG helicase and PriA protein to be present. Genetic analysis of mutant phenotypes suggests that RecG is needed to dissipate R-loops at blocked replication forks. Additionally, we identify that DNA polymerase I is important for both primed and naive adaptation, and that RecB is needed for naïve adaptation. Purified Cas1-Cas2 protein shows specificity for binding to and nicking forked DNA within single strand gaps, and collapsing forks into DNA duplexes. The data suggest that different genome stability systems interact with primed or naïve adaptation when responding to blocked or collapsed invader DNA replication. In this model, RecG and Cas3 proteins respond to invader DNA replication forks that are blocked by Cascade interference, enabling DNA capture. RecBCD targets DNA ends at collapsed forks, enabling DNA capture without interference. DNA polymerase I is proposed to fill DNA gaps during spacer integration.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Adaptación Fisiológica , ADN/metabolismo , ADN Helicasas/metabolismo , ADN Polimerasa I/metabolismo , Replicación del ADN , Desoxirribonucleasas/metabolismo , Escherichia coli/enzimología , Escherichia coli/inmunología , Escherichia coli/metabolismo , Inestabilidad Genómica
2.
Stem Cell Reports ; 9(5): 1387-1394, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29056335

RESUMEN

To interrogate the alternative fates of pancreas and liver in the earliest stages of human organogenesis, we developed laser capture, RNA amplification, and computational analysis of deep sequencing. Pancreas-enriched gene expression was less conserved between human and mouse than for liver. The dorsal pancreatic bud was enriched for components of Notch, Wnt, BMP, and FGF signaling, almost all genes known to cause pancreatic agenesis or hypoplasia, and over 30 unexplored transcription factors. SOX9 and RORA were imputed as key regulators in pancreas compared with EP300, HNF4A, and FOXA family members in liver. Analyses implied that current in vitro human stem cell differentiation follows a dorsal rather than a ventral pancreatic program and pointed to additional factors for hepatic differentiation. In summary, we provide the transcriptional codes regulating the start of human liver and pancreas development to facilitate stem cell research and clinical interpretation without inter-species extrapolation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Hígado/embriología , Páncreas/embriología , Activación Transcripcional , Transcriptoma , Diferenciación Celular , Perfilación de la Expresión Génica , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Hígado/metabolismo , Páncreas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA