Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 615(7952): 517-525, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859545

RESUMEN

Most human cells require anchorage for survival. Cell-substrate adhesion activates diverse signalling pathways, without which cells undergo anoikis-a form of programmed cell death1. Acquisition of anoikis resistance is a pivotal step in cancer disease progression, as metastasizing cells often lose firm attachment to surrounding tissue2,3. In these poorly attached states, cells adopt rounded morphologies and form small hemispherical plasma membrane protrusions called blebs4-11. Bleb function has been thoroughly investigated in the context of amoeboid migration, but it has been examined far less in other scenarios12. Here we show by three-dimensional imaging and manipulation of cell morphological states that blebbing triggers the formation of plasma membrane-proximal signalling hubs that confer anoikis resistance. Specifically, in melanoma cells, blebbing generates plasma membrane contours that recruit curvature-sensing septin proteins as scaffolds for constitutively active mutant NRAS and effectors. These signalling hubs activate ERK and PI3K-well-established promoters of pro-survival pathways. Inhibition of blebs or septins has little effect on the survival of well-adhered cells, but in detached cells it causes NRAS mislocalization, reduced MAPK and PI3K activity, and ultimately, death. This unveils a morphological requirement for mutant NRAS to operate as an effective oncoprotein. Furthermore, whereas some BRAF-mutated melanoma cells do not rely on this survival pathway in a basal state, inhibition of BRAF and MEK strongly sensitizes them to both bleb and septin inhibition. Moreover, fibroblasts engineered to sustain blebbing acquire the same anoikis resistance as cancer cells even without harbouring oncogenic mutations. Thus, blebs are potent signalling organelles capable of integrating myriad cellular information flows into concerted cellular responses, in this case granting robust anoikis resistance.


Asunto(s)
Anoicis , Carcinogénesis , Extensiones de la Superficie Celular , Supervivencia Celular , Melanoma , Transducción de Señal , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Septinas/metabolismo , Extensiones de la Superficie Celular/química , Extensiones de la Superficie Celular/metabolismo , Carcinogénesis/genética , Adhesión Celular , Quinasas MAP Reguladas por Señal Extracelular , Fibroblastos , Mutación , Forma de la Célula , Imagenología Tridimensional , Quinasas de Proteína Quinasa Activadas por Mitógenos
2.
Biomacromolecules ; 24(11): 4680-4694, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37747816

RESUMEN

3D printing of pharmaceuticals offers a unique opportunity for long-term, sustained drug release profiles for an array of treatment options. Unfortunately, this approach is often limited by physical compounding or processing limitations. Modification of the active drug into a prodrug compound allows for seamless incorporation with advanced manufacturing methods that open the door to production of complex tissue scaffold drug depots. Here we demonstrate this concept using salicylic acids with varied prodrug structures for control of physical and chemical properties. The role of different salicylic acid derivatives (salicylic acid, bromosalicylic allyl ester, iodosalicylic allyl ester) and linker species (allyl salicylate, allyl 2-(allyloxy)benzoate, allyl 2-(((allyloxy)carbonyl)oxy)benzoate) were investigated using thiol-ene cross-linking in digital light processing (DLP) 3D printing to produce porous prodrug tissue scaffolds containing more than 50% salicylic acid by mass. Salicylic acid photopolymer resins were all found to be highly reactive (solidification within 5 s of irradiation at λ = 405 nm), while the cross-linked solids display tunable thermomechanical behaviors with low glass transition temperatures (Tgs) and elastomeric behaviors, with the carbonate species displaying an elastic modulus matching that of adipose tissue (approximately 65 kPa). Drug release profiles were found to be zero order, sustained release based upon hydrolytic degradation of multilayered scaffolds incorporating fluorescent modeling compounds, with release rates tuned through selection of the linker species. Cytocompatibility in 2D and 3D was further demonstrated for all species compared to polycarbonate controls, as well as salicylic acid-containing composites (physical incorporation), over a 2-week period using murine fibroblasts. The use of drugs as the matrix material for solid prodrug tissue scaffolds opens the door to novel therapeutic strategies, longer sustained release profiles, and even reduced complications for advanced medicine.


Asunto(s)
Profármacos , Andamios del Tejido , Ratones , Animales , Andamios del Tejido/química , Ácido Salicílico/química , Preparaciones de Acción Retardada/química , Liberación de Fármacos , Ésteres , Impresión Tridimensional
3.
Biomacromolecules ; 23(6): 2342-2352, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35608477

RESUMEN

Green manufacturing and reducing our cultural dependency on petrochemicals have been topics of growing interest in the past decade, particularly for three-dimensional (3D) printable photopolymers where often toxic solvents and reagents have been required. Here, a simple solvent-free, free-radical polymerization is utilized to homo- and copolymerize limonene and ß-myrcene monomers to produce oligomeric photopolymers (Mn < 11 kDa) displaying Newtonian, low viscosities (∼10 Pa × s) suitable for thiol-ene photo-cross-linking, yielding photoset materials in a digital light processing (DLP)-type 3D printer. The resulting photosets display tunable thermomechanical properties (poly(limonene) displays elastic moduli exceeding 1 GPa) compared with previous works focusing on monomeric terpenes as well as four-dimensional (4D) shape memory behavior. The utility of such photopolymers for biomedical applications is briefly considered on the premise of the hydrophilic nature (measured by contact angle) as well as their cytocompatibility upon seeding films with macrophages. These terpene-derived, green 4D photopolymers are shown to have promising physical behaviors suitable for an array of manufacturing and 3D printing applications.


Asunto(s)
Impresión Tridimensional , Terpenos , Monoterpenos Acíclicos , Limoneno , Polimerizacion
4.
Biomacromolecules ; 21(1): 163-170, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31588729

RESUMEN

Biosourced materials are gaining interest industrially, but there are still limitations on the library of available materials suitable for advanced manufacturing, especially using photopolymerization-based processing techniques. Terpenes, such as myrcene, are naturally produced materials possessing structural features, specifically alkenes, that avail themselves for such techniques. Free-radical and anionic polymerization techniques were used to explore molecular architecture, such as branching, as well as molecular weight and dispersity on physical properties prior to the production of 3D printing photopolymer resins. The polymyrcene resins were printed into dogbones and mold templates for soft materials. Model reactions with monofunctional thiols were used to demonstrate the potential for postpolymerization and fabrication functionalization, accompanying a physical demonstration where the surface hydrophobicity of polymyrcene could be tuned from superhydrophobic when using an alkyl chain monothiol (greater than 100° water contact angle) to a hydrophilic surface displaying a water contact angle of less than 45° compared with that of the unmodified surface (∼60°). Tunable bulk and surface properties are a unique feature for 3D printing materials and demonstrate the potential of polymyrcene and other biosourced photopolymers to a wide range of research applications.


Asunto(s)
Monoterpenos Acíclicos/química , Alquenos/química , Impresión Tridimensional , Ácido 3-Mercaptopropiónico/análogos & derivados , Ácido 3-Mercaptopropiónico/química , Rastreo Diferencial de Calorimetría , Reactivos de Enlaces Cruzados/química , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Fotoquímica/métodos , Polimerizacion , Polímeros/química , Glicoles de Propileno/química , Reología , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
5.
Biomacromolecules ; 21(3): 1037-1059, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32058702

RESUMEN

The advent of additive manufacturing offered the potential to revolutionize clinical medicine, particularly with patient-specific implants across a range of tissue types. However, to date, there are very few examples of polymers being used for additive processes in clinical settings. The state of the art with regards to 3D printable polymeric materials being exploited to produce novel clinically relevant implants is discussed here. We focus on the recent advances in the development of implantable, polymeric medical devices and tissue scaffolds without diverging extensively into bioprinting. By introducing the major 3D printing techniques along with current advancements in biomaterials, we hope to provide insight into how these fields may continue to advance while simultaneously reviewing the ongoing work in the field.


Asunto(s)
Materiales Biocompatibles , Bioimpresión , Humanos , Polímeros , Impresión Tridimensional , Ingeniería de Tejidos
6.
Biomacromolecules ; 20(1): 109-117, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30179461

RESUMEN

Magnolol, a neolignan natural product with antioxidant properties, contains inherent, orthogonal, phenolic, and alkenyl reactive groups that were used in both direct thermoset synthesis, as well as the stepwise synthesis of a small library of monomers, followed by transformation into thermoset materials. Each monomer from the small library was prepared via a single step functionalization reaction of the phenolic groups of magnolol. Thermoset materials were realized through solvent-free, thiol-ene reactions, and the resulting cross-linked materials were each comprised of thioether and ester linkages, with one retaining the hydrophilic phenols from magnolol, another having the phenols protected as an acetonide, and two others incorporating the phenols into additional cross-linking sites via hydrolytically labile carbonates or stable ether linkages. With this diversity of chemical compositions and structures, the thermosets displayed a range of thermomechanical properties including glass transition temperatures, Tg, 29-52 °C, onset of thermal degradation, Td, from about 290-360 °C, and ultimate strength up to 50 MPa. These tunable materials were studied in their degradation and biological properties with the aim of exploiting the antioxidant properties of the natural product. Hydrolytic degradation occurred under basic conditions (pH = 11) in all thermosets, but with kinetics that were dependent upon their chemical structures and mechanical properties: 20% mass loss was observed at 5, 7, 27, and 40 weeks for the thermosets produced from magnolol directly, acetonide-protected magnolol, bis(allyl carbonate)-functionalized magnolol, and bis(allyl ether)-functionalized magnolol, respectively. Isolated degradation products and model compounds displayed antioxidant properties similar to magnolol, as determined by both UV-vis and in vitro reactive oxygen species (ROS) assays. As these magnolol-based thermosets were found to also allow for extended cell culture, these materials may serve as promising degradable biomaterials.


Asunto(s)
Antioxidantes/síntesis química , Plásticos Biodegradables/síntesis química , Compuestos de Bifenilo/química , Lignanos/síntesis química , Polímeros de Estímulo Receptivo/síntesis química , Ácido 3-Mercaptopropiónico/análogos & derivados , Ácido 3-Mercaptopropiónico/química , Animales , Antioxidantes/farmacología , Bovinos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Lignanos/química , Fenoles/química , Glicoles de Propileno/química , Estrés Mecánico , Temperatura
7.
Dev Cell ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38870943

RESUMEN

In crowded microenvironments, migrating cells must find or make a path. Amoeboid cells are thought to find a path by deforming their bodies to squeeze through tight spaces. Yet, some amoeboid cells seem to maintain a near-spherical morphology as they move. To examine how they do so, we visualized amoeboid human melanoma cells in dense environments and found that they carve tunnels via bleb-driven degradation of extracellular matrix components without the need for proteolytic degradation. Interactions between adhesions and collagen at the cell front induce a signaling cascade that promotes bleb enlargement via branched actin polymerization. Large blebs abrade collagen, creating feedback between extracellular matrix structure, cell morphology, and polarization that enables both path generation and persistent movement.

8.
bioRxiv ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38766074

RESUMEN

Cell segmentation is the fundamental task. Only by segmenting, can we define the quantitative spatial unit for collecting measurements to draw biological conclusions. Deep learning has revolutionized 2D cell segmentation, enabling generalized solutions across cell types and imaging modalities. This has been driven by the ease of scaling up image acquisition, annotation and computation. However 3D cell segmentation, which requires dense annotation of 2D slices still poses significant challenges. Labelling every cell in every 2D slice is prohibitive. Moreover it is ambiguous, necessitating cross-referencing with other orthoviews. Lastly, there is limited ability to unambiguously record and visualize 1000's of annotated cells. Here we develop a theory and toolbox, u-Segment3D for 2D-to-3D segmentation, compatible with any 2D segmentation method. Given optimal 2D segmentations, u-Segment3D generates the optimal 3D segmentation without data training, as demonstrated on 11 real life datasets, >70,000 cells, spanning single cells, cell aggregates and tissue.

9.
ArXiv ; 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37090235

RESUMEN

Signal transduction and cell function are governed by the spatiotemporal organization of membrane-associated molecules. Despite significant advances in visualizing molecular distributions by 3D light microscopy, cell biologists still have limited quantitative understanding of the processes implicated in the regulation of molecular signals at the whole cell scale. In particular, complex and transient cell surface morphologies challenge the complete sampling of cell geometry, membrane-associated molecular concentration and activity and the computing of meaningful parameters such as the cofluctuation between morphology and signals. Here, we introduce u-Unwrap3D, a framework to remap arbitrarily complex 3D cell surfaces and membrane-associated signals into equivalent lower dimensional representations. The mappings are bidirectional, allowing the application of image processing operations in the data representation best suited for the task and to subsequently present the results in any of the other representations, including the original 3D cell surface. Leveraging this surface-guided computing paradigm, we track segmented surface motifs in 2D to quantify the recruitment of Septin polymers by blebbing events; we quantify actin enrichment in peripheral ruffles; and we measure the speed of ruffle movement along topographically complex cell surfaces. Thus, u-Unwrap3D provides access to spatiotemporal analyses of cell biological parameters on unconstrained 3D surface geometries and signals.

10.
bioRxiv ; 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37131779

RESUMEN

Signal transduction and cell function are governed by the spatiotemporal organization of membrane-associated molecules. Despite significant advances in visualizing molecular distributions by 3D light microscopy, cell biologists still have limited quantitative understanding of the processes implicated in the regulation of molecular signals at the whole cell scale. In particular, complex and transient cell surface morphologies challenge the complete sampling of cell geometry, membrane-associated molecular concentration and activity and the computing of meaningful parameters such as the cofluctuation between morphology and signals. Here, we introduce u-Unwrap3D, a framework to remap arbitrarily complex 3D cell surfaces and membrane-associated signals into equivalent lower dimensional representations. The mappings are bidirectional, allowing the application of image processing operations in the data representation best suited for the task and to subsequently present the results in any of the other representations, including the original 3D cell surface. Leveraging this surface-guided computing paradigm, we track segmented surface motifs in 2D to quantify the recruitment of Septin polymers by blebbing events; we quantify actin enrichment in peripheral ruffles; and we measure the speed of ruffle movement along topographically complex cell surfaces. Thus, u-Unwrap3D provides access to spatiotemporal analyses of cell biological parameters on unconstrained 3D surface geometries and signals.

11.
ACS Appl Mater Interfaces ; 13(17): 20641-20652, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33872493

RESUMEN

Shape memory poly(ß-hydroxythioether) foams were produced using organobase catalyzed reactions between epoxide and thiol monomers, allowing for the rapid formation of porous media within approximately 5 min, confirmed using both rheology and physical foam blowing. The porous materials possess ultralow densities (0.022 g × cm-3) and gel fractions of approximately 93%. Thermomechanical characterizations of the materials revealed glass transition temperatures tunable from approximately 50 to 100 °C, elastic moduli of approximately 2 kPa, and complete strain recovery upon heating of the sample above its glass transition temperature. The foams were characterized for their ability to take up oil from an aqueous multilayered ideal environment, revealing more than 2000% mass of oil (relative to the foam mass) could be collected. Importantly, while post-fabrication functionalization was possible with isocyanate chemistry followed by addition of hexadecanethiol or 3,3-bis(hexadecylthio)propan-1-ol, the oil collection efficiency of the system was not significantly enhanced, indicating that these materials, as porous media, possess unique attributes that make them appealing for environmental remediation without the need for costly modifications or manipulations.

12.
G3 (Bethesda) ; 11(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34544131

RESUMEN

Life requires the oligomerization of individual proteins into higher-order assemblies. In order to form functional oligomers, monomers must adopt appropriate 3D structures. Molecular chaperones transiently bind nascent or misfolded proteins to promote proper folding. Single missense mutations frequently cause disease by perturbing folding despite chaperone engagement. A misfolded mutant capable of oligomerizing with wild-type proteins can dominantly poison oligomer function. We previously found evidence that human-disease-linked mutations in Saccharomyces cerevisiae septin proteins slow folding and attract chaperones, resulting in a kinetic delay in oligomerization that prevents the mutant from interfering with wild-type function. Here, we build upon our septin studies to develop a new approach for identifying chaperone interactions in living cells, and use it to expand our understanding of chaperone involvement, kinetic folding delays, and oligomerization in the recessive behavior of tumor-derived mutants of the tumor suppressor p53. We find evidence of increased binding of several cytosolic chaperones to a recessive, misfolding-prone mutant, p53(V272M). Similar to our septin results, chaperone overexpression inhibits the function of p53(V272M) with minimal effect on the wild type. Unlike mutant septins, p53(V272M) is not kinetically delayed under conditions in which it is functional. Instead, it interacts with wild-type p53 but this interaction is temperature sensitive. At high temperatures or upon chaperone overexpression, p53(V272M) is excluded from the nucleus and cannot function or perturb wild-type function. Hsp90 inhibition liberates mutant p53 to enter the nucleus. These findings provide new insights into the effects of missense mutations.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
13.
Nat Commun ; 12(1): 3771, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34226548

RESUMEN

3D printing has emerged as one of the most promising tools to overcome the processing and morphological limitations of traditional tissue engineering scaffold design. However, there is a need for improved minimally invasive, void-filling materials to provide mechanical support, biocompatibility, and surface erosion characteristics to ensure consistent tissue support during the healing process. Herein, soft, elastomeric aliphatic polycarbonate-based materials were designed to undergo photopolymerization into supportive soft tissue engineering scaffolds. The 4D nature of the printed scaffolds is manifested in their shape memory properties, which allows them to fill model soft tissue voids without deforming the surrounding material. In vivo, adipocyte lobules were found to infiltrate the surface-eroding scaffold within 2 months, and neovascularization was observed over the same time. Notably, reduced collagen capsule thickness indicates that these scaffolds are highly promising for adipose tissue engineering and repair.


Asunto(s)
Tejido Adiposo/citología , Elasticidad , Cemento de Policarboxilato/química , Impresión Tridimensional/normas , Estereolitografía/normas , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Tejido Adiposo/fisiología , Animales , Células Cultivadas , Masculino , Polímeros , Porosidad , Ratas
14.
Elife ; 92020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31990274

RESUMEN

Septin proteins evolved from ancestral GTPases and co-assemble into hetero-oligomers and cytoskeletal filaments. In Saccharomyces cerevisiae, five septins comprise two species of hetero-octamers, Cdc11/Shs1-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11/Shs1. Slow GTPase activity by Cdc12 directs the choice of incorporation of Cdc11 vs Shs1, but many septins, including Cdc3, lack GTPase activity. We serendipitously discovered that guanidine hydrochloride rescues septin function in cdc10 mutants by promoting assembly of non-native Cdc11/Shs1-Cdc12-Cdc3-Cdc3-Cdc12-Cdc11/Shs1 hexamers. We provide evidence that in S. cerevisiae Cdc3 guanidinium occupies the site of a 'missing' Arg side chain found in other fungal species where (i) the Cdc3 subunit is an active GTPase and (ii) Cdc10-less hexamers natively co-exist with octamers. We propose that guanidinium reactivates a latent septin assembly pathway that was suppressed during fungal evolution in order to restrict assembly to octamers. Since homodimerization by a GTPase-active human septin also creates hexamers that exclude Cdc10-like central subunits, our new mechanistic insights likely apply throughout phylogeny.


For a cell to work and perform its role, it relies on molecules called proteins that are made up of chains of amino acids. Individual proteins can join together like pieces in a puzzle to form larger, more complex structures. How the protein subunits fit together depends on their individual shapes and sizes. Many cells contain proteins called septins, which can assemble into larger protein complexes that are involved in range of cellular processes. The number of subunits within these complexes differs between organisms and sometimes even between cell types in the same organism. For example, yeast typically have eight subunits within a septin protein complex and struggle to survive when the number of septin subunits is reduced to six. Whereas other organisms, including humans, can make septin protein complexes containing six or eight subunits. However, it is poorly understood how septin proteins are able to organize themselves into these different sized complexes. Now, Johnson et al. show that a chemical called guanidinium helps yeast make complexes containing six septin subunits. Guanidinium has many similarities to the amino acid arginine. Comparing septins from different species revealed that one of the septin proteins in yeast lacks a key arginine component. This led Johnson et al. to propose that when guanidinium binds to septin at the site where arginine should be, this steers the septin protein towards the shape required to make a six-subunit complex. These findings reveal a new detail of how some species evolved complexes consisting of different numbers of subunits. This work demonstrates a key difference between complexes made up of six septin proteins and complexes which are made up of eight, which may be relevant in how different human cells adapt their septin complexes for different purposes. It may also become possible to use guanidinium to treat genetic diseases that result from the loss of arginine in certain proteins.


Asunto(s)
Biopolímeros/metabolismo , Guanidina/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Septinas/metabolismo , Arginina/metabolismo , Calor , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
15.
Dev Cell ; 55(6): 723-736.e8, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33308479

RESUMEN

Despite the well-established role of actin polymerization as a driving mechanism for cell protrusion, upregulated actin polymerization alone does not initiate protrusions. Using a combination of theoretical modeling and quantitative live-cell imaging experiments, we show that local depletion of actin-membrane links is needed for protrusion initiation. Specifically, we show that the actin-membrane linker ezrin is depleted prior to protrusion onset and that perturbation of ezrin's affinity for actin modulates protrusion frequency and efficiency. We also show how actin-membrane release works in concert with actin polymerization, leading to a comprehensive model for actin-driven shape changes. Actin-membrane release plays a similar role in protrusions driven by intracellular pressure. Thus, our findings suggest that protrusion initiation might be governed by a universal regulatory mechanism, whereas the mechanism of force generation determines the shape and expansion properties of the protrusion.


Asunto(s)
Actinas/metabolismo , Membrana Celular/metabolismo , Extensiones de la Superficie Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Animales , Línea Celular Tumoral , Membrana Celular/ultraestructura , Extensiones de la Superficie Celular/ultraestructura , Células Cultivadas , Citoesqueleto/metabolismo , Femenino , Humanos , Masculino , Ratones , Estrés Mecánico
16.
Nat Commun ; 11(1): 1420, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32184392

RESUMEN

The ability to control nanostructure shape and dimensions presents opportunities to design materials in which their macroscopic properties are dependent upon the nature of the nanoparticle. Although particle morphology has been recognized as a crucial parameter, the exploitation of the potential shape-dependent properties has, to date, been limited. Herein, we demonstrate that nanoparticle shape is a critical consideration in the determination of nanocomposite hydrogel properties. Using translationally relevant calcium-alginate hydrogels, we show that the use of poly(L-lactide)-based nanoparticles with platelet morphology as an adhesive results in a significant enhancement of adhesion over nanoparticle glues comprised of spherical or cylindrical micelles. Furthermore, gel nanocomposites containing platelets showed an enhanced resistance to breaking under strain compared to their spherical and cylindrical counterparts. This study opens the doors to a change in direction in the field of gel nanocomposites, where nanoparticle shape plays an important role in tuning mechanical properties.

17.
Nat Commun ; 11(1): 3250, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591525

RESUMEN

Biocompatible polymers are widely used in tissue engineering and biomedical device applications. However, few biomaterials are suitable for use as long-term implants and these examples usually possess limited property scope, can be difficult to process, and are non-responsive to external stimuli. Here, we report a class of easily processable polyamides with stereocontrolled mechanical properties and high-fidelity shape memory behaviour. We synthesise these materials using the efficient nucleophilic thiol-yne reaction between a dipropiolamide and dithiol to yield an α,ß - unsaturated carbonyl moiety along the polymer backbone. By rationally exploiting reaction conditions, the alkene stereochemistry is modulated between 35-82% cis content and the stereochemistry dictates the bulk material properties such as tensile strength, modulus, and glass transition. Further access to materials possessing a broader range of thermal and mechanical properties is accomplished by polymerising a variety of commercially available dithiols with the dipropiolamide monomer.


Asunto(s)
Elastómeros/química , Fenómenos Mecánicos , Nylons/química , Materiales Inteligentes/química , Animales , Materiales Biocompatibles/farmacología , Rastreo Diferencial de Calorimetría , Línea Celular , Masculino , Ensayo de Materiales , Ratones , Nylons/síntesis química , Polimerizacion , Ratas Sprague-Dawley , Estrés Mecánico , Compuestos de Sulfhidrilo/química , Temperatura
18.
J Appl Polym Sci ; 136(35)2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32601505

RESUMEN

While many aromatic polyurethane systems suffer from poor hydrolytic stability, more recently proposed aliphatic systems are oxidatively-labile. The use of the renewable monomer glycerol as a more oxidatively-resistant moiety for inclusion in shape memory polymers (SMPs) is demonstrated here. Glycerol-containing SMPs and the amino alcohol control compositions are compared, with accelerated degradation testing displaying increased stability (time to complete mass loss) as a result of the inclusion of glycerol without sacrificing the shape memory, thermal transitions, or the ultralow density achieved with the control compositions. Gravimetric analysis in accelerated oxidative solution indicates that the control will undergo complete mass loss by approximately 18 days, while lower concentrations of glycerol will degrade fully by 30 days and higher concentrations will possess approximately 40% mass at the same time. In real time degradation analysis, high concentrations of glycerol SMPs have 96% mass remaining at 8 months with 88% gel fraction remaining that that time, compared to less than 50% mass for the control samples with 5% gelation. Mechanically, low glycerol-containing SMPs were not robust enough for testing at three months, while high glycerol concentrations displayed increased elastic moduli (133% of virgin materials) and 18% decreased strain to failure. The role of the secondary alcohol, as well as isocyanates, is presented as being a crucial component in controlling degradation; a free secondary alcohol can more rapidly undergo oxidation or dehydration to ultimately yield carboxylic acids, aldehydes, carbon dioxide, and alkenes. Understanding these pathways will improve the utility of medical devices through more precise control of property loss and patient risk management through reduced degradation.

19.
J Vis Exp ; (148)2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31282881

RESUMEN

The production of monodisperse cylindrical micelles is a significant challenge in polymer chemistry. Most cylindrical constructs formed from diblock copolymers are produced by one of three techniques: thin film rehydration, solvent switching or polymerization-induced self-assembly, and produce only flexible, polydisperse cylinders. Crystallization-driven self-assembly (CDSA) is a method which can produce cylinders with these properties, by stabilizing structures of a lower curvature due to the formation of a crystalline core. However, the living polymerization techniques by which most core-forming blocks are formed are not trivial processes and the CDSA process may yield unsatisfactory results if carried out incorrectly. Here, the synthesis of cylindrical nanoparticles from simple reagents is shown. The drying and purification of reagents prior to a ring-opening polymerization of ε-caprolactone catalyzed by diphenyl phosphate is described. This polymer is then chain extended by methyl methacrylate (MMA) followed by N,N-dimethyl acrylamide (DMA) using reversible addition-fragmentation chain-transfer (RAFT) polymerization, affording a triblock copolymer that can undergo CDSA in ethanol. The living CDSA process is outlined, the results of which yield cylindrical nanoparticles up to 500 nm in length and a length dispersity as low as 1.05. It is anticipated that these protocols will allow others to produce cylindrical nanostructures and elevate the field of CDSA in the future.


Asunto(s)
Nanopartículas/química , Polímeros/química , Cristalización , Micelas , Polimerizacion , Solventes
20.
ACS Appl Bio Mater ; 2(1): 454-463, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-32832879

RESUMEN

Minimally invasive medical devices are of great interest, with shape memory polymers (SMPs) representing one such possibility for producing these devices. Previous work with low density, highly porous SMPs has demonstrated oxidative degradation, while attempts to incorporate hydrolytic degradation have resulted in rapidly decreasing glass transition temperature (T g ), ultimately preventing strain fixity of the materials at clinically relevant temperatures. Through esterification of the amino alcohol triethanolamine, an alcohol containing network was synthesized and incorporated into SMPs. These ester networks were used to control the bulk morphology of the SMP, with the T g remaining above 37 °C when 50% of the alcohol was contributed by the ester network. This methodology also yielded SMPs that could degrade through both hydrolysis and oxidation; by oxidation, the SMPs degrade at a similar rate as the control materials (0.2%/day mass) for the first 30 days, at which point the rate changes to 3.5%/day until the samples become too fragile to examine at 80 days. By comparison, control materials have lost approximately 30% of mass by 140 days, at a constant rate of degradation, demonstrating that the ester SMPs are a promising material system for producing more rapidly degradable, soft, porous biomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA