Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
BMC Genomics ; 25(1): 383, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637759

RESUMEN

BACKGROUND: The Asian yellow pond turtle (Mauremys mutica) is an important commercial freshwater aquaculture species in China. This species is a highly sexually dimorphic species, with males growing at a faster rate than females and exhibits temperature-dependent sex determination (TSD), in which the incubation temperature during embryonic development determines the sexual fate. However, the mechanisms of the sex determination or sex differentiation in the Asian yellow pond turtle are remain a mystery. RESULTS: Temperature-specific gonadal transcriptomics of the Asian yellow pond turtle were performed during the thermosensitive period (stage 15) using RNA-seq technology to identify candidate genes that initiate gonadal differentiation. We uncovered candidates that were the first to respond to temperature. These candidates were sexually dimorphic in expression, reflecting differences in gonadal (Cirbp, Runx1) and germline differentiation (Vasa, Nanos1, Piwil2), gametogenesis (Hmgb3, Zar1, Ovoinhibitor-like, Kif4), steroid hormone biosynthesis (Hsd17b5, Hsd17b6), heat shock (Dnajb6, Hsp90b1, Hsp90aa1) and transient receptor potential channel genes (Trpm1, Trpm4, Trpm6, Trpv1). CONCLUSIONS: Our work will provide important genetic information to elucidate the mechanisms of sex control in the Asian yellow pond turtles, and will contribute important genetic resources for further studies of temperature-dependent sex determination in turtles.


Asunto(s)
Diferenciación Sexual , Tortugas , Masculino , Animales , Femenino , Diferenciación Sexual/genética , Tortugas/genética , Temperatura , Perfilación de la Expresión Génica , Desarrollo Embrionario
2.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38255893

RESUMEN

Male and female Chinese soft-shelled turtles (Pelodiscus sinensis) have sex-dimorphic growth patterns, and males have higher commercial value because of their larger size and thicker calipash. Thus, developing sex-specific markers is beneficial to studies on all-male breeding in P. sinensis. Here, we developed an accurate and efficient workflow for the screening of sex-specific sequences with ZW or XY sex determination systems. Based on this workflow, female and male P. sinensis reference genomes of 2.23 Gb and 2.26 Gb were obtained using de novo assembly. After aligning and filtering, 4.01 Mb female-specific sequences were finally identified. Subsequently, the seven developed sex-specific primer pairs were 100% accurate in preliminary, population, and embryonic validation. The presence and absence of bands for the primers of P44, P45, P66, P67, P68, and P69, as well as two and one bands for the PB1 primer, indicate that the embryos are genetically female and male, respectively. NR and functional annotations identified several sex-determining candidate genes and related pathways, including Ran, Eif4et, and Crkl genes, and the insulin signaling pathway and the cAMP signaling pathway, respectively. Collectively, our results reveal that a ZW-type sex-determination system is present in P. sinensis and provide novel insights for the screening of sex-specific markers, sex-control breeding, and the studies of the sex determination mechanism of P. sinensis.


Asunto(s)
Tortugas , Femenino , Masculino , Animales , Tortugas/genética , Reptiles
3.
Biol Reprod ; 107(5): 1217-1227, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-35835578

RESUMEN

DNA methylation plays a significant role in transducing external environmental signals to a cellular response in reptiles; however, whether the methylation patterns are conserved across species remains unclear. Here, we examined the genome-wide DNA methylation differentiation between male and female hatchling gonads of the temperature-dependent sex determination (TSD) Mauremys mutica (M. mutica) using methylation-dependent restriction-site associated DNA sequencing (MethylRAD-seq) to test differentially methylated genes underlying sexual development. Several categories, including heat-shock genes (HSP90A, HSP30C), histone- (KDM8) and ubiquitin-related genes (TRIM39), kinases (WNK3), and gonad differentiation or gonadal-development-related genes (HSD17B8, HSD17B12), were identified as candidates for future study. Additionally, we identified several regulatory pathways potentially mediating TSD thermosensitivity such as the GnRH signaling pathway and calcium signaling pathway. These findings provide evidence that sexually dimorphic DNA methylation may be associated with sex determination or sex differentiation in TSD M. mutica.


Asunto(s)
Metilación de ADN , Procesos de Determinación del Sexo , Animales , Femenino , Masculino , Procesos de Determinación del Sexo/genética , Temperatura , Gónadas , Diferenciación Sexual , Reptiles/genética
4.
Front Immunol ; 15: 1376860, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799475

RESUMEN

Introduction: Aeromonas hydrophila, a bacterium widely distributed in the natural environment, causes multiple diseases in various animals. Exploring the mechanism of the host defense against A. hydrophila can help develop efficient strategies against Aeromonas infection. Methods: Herein, we investigated the temporal influence of A. hydrophila on the Chinese soft-shelled turtle, an economically important species, at the biochemical, transcriptomic, and metabolomic levels. Plasma parameters were detected with the test kits. Transcriptome and metabolome were respectively applied to screen the differentially expressed genes and metabolites. Results: The contents or activities of these plasma parameters were significantly increased at 24 hpi and declined at 96 hpi, indicating that 24 and 96 hpi were two important time points during infection. Totals of 3121 and 274 differentially expressed genes (DEGs) from the transcriptome while 74 and 91 differentially abundant metabolites (DAMs) from the metabolome were detected at 24 and 96 hpi. The top DEGs at 24 hpi included Ccl2, Ccl3, Ccl4, Il1ß, Il6, Il7, Il15, Tnf, and Tnfr1 while Zap70, Cd3g, Cd8a, Itk, Pik3r3, Cd247, Malt1, and Cd4 were the most abundant at 96 hpi. The predominant DAMs included O-phospho-L-serine, γ-Aminobutyric acid, orotate, L-tyrosine, and L-tryptophan at 24 hpi, as well as L-glutamic acid, L-arginine, glutathione, glutathione disulfide, and citric acid at 96 hpi. Discussion: The combined analysis of DEGs and DAMs revealed that tryptophan metabolism, nicotinate and nicotinamide metabolism, as well as starch and sucrose metabolism, were the most important signaling pathways at the early infective stage while tyrosine metabolism, pyrimidine metabolism, as well as alanine, aspartate and glutamate metabolism were the most crucial pathways at the later stage. In general, our results indicated that the Chinese soft-shelled turtle displays stage-specific physiological responses to resist A. hydrophila infection.


Asunto(s)
Aeromonas hydrophila , Infecciones por Bacterias Gramnegativas , Hígado , Metaboloma , Metabolómica , Transducción de Señal , Transcriptoma , Tortugas , Animales , Tortugas/microbiología , Tortugas/inmunología , Tortugas/genética , Aeromonas hydrophila/fisiología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Hígado/metabolismo , Perfilación de la Expresión Génica
5.
Animals (Basel) ; 14(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38338122

RESUMEN

The Asian yellow pond turtle (Mauremys mutica) is widely traded in China, and its artificial breeding has now become a major industry. However, the insufficient offspring supply and reproductive decline of farmed turtles make the wild turtles more vulnerable. The present study was mainly designed to quantify the fecundity of M. mutica and attempt to screen for good reproductive performance in females. The genetic variability of the population and its genetic structure were also analysed. The parent-offspring relationships of all offspring in four consecutive years were confirmed using sixteen microsatellite loci. The genetic variability between the parents and offspring was low, and offspring of different years also showed little variability. We summarised the reproductive results of all females and counted the annual number of offspring and the variation in the number of offspring. The females were then divided into three types (stable, undulating and levelling off) according to the continuity. We selected seven females with good reproductive ability, which provided 16.94% of the annual contributions, while there were two females that had no offspring in four years. We also analysed the possible reasons for this difference and the importance of carrying out a family survey. This research can provide the basis and materials for the creation of a good reproductive group and the study of the reproductive biology of turtles in M. mutica aquaculture.

6.
Animals (Basel) ; 14(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38540029

RESUMEN

The DKK family is a canonical small family of WNT antagonists. Though recent studies have suggested that the DKK gene family may be involved in sex differentiation in Pelodiscus sinensis, there are still a lot of things about the DKK gene family that we do not know. In this study, we used bioinformatics methods to identify members of the DKK gene family in P. sinensis and analyzed their phylogeny, covariance, gene structure, structural domains, promoter conserved sites, signal peptides, gonadal transcription factors, transcriptional profiles, and tissue expression profiles. Additionally, qRT-PCR results were utilized for the validation and preliminary investigation of the function of the DKK gene family in P. sinensis. The results showed that the DKK gene family is divided into six subfamilies, distributed on six different chromosomal scaffolds containing different gene structures and conserved motifs with the same structural domains, and all of the members were secreted proteins. Our transcriptional profiling and embryonic expression analysis showed that DKKL1 and DKK4 were significantly expressed in the testes, whereas DKK1 and DKK3 were significantly upregulated in the ovaries. This suggests a potential function in sex differentiation in P. sinensis. Our results may provide a basic theoretical basis for the sex differentiation process in P. sinensis.

7.
Int J Biol Macromol ; 254(Pt 1): 127696, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37913874

RESUMEN

A feature of the Chinese soft-shelled turtle (Pelodiscus sinensis) is seasonal spermatogenesis; however, the underlying molecular mechanism is not well clarified. Here, we firstly cloned and characterized P. sinensis DKKL1, and then performed comparative genomic studies, expression analysis, and functional validation. P. sinensis DKKL1 had 2 putative N-glycosylation sites and 16 phosphorylation sites. DKKL1 also had classic transmembrane structures that were extracellularly localized. DKKL1's genetic distance was close to turtles, followed by amphibians and mammals, but its genetic distance was far from fishes. DKKL1 genes from different species shared distinct genomic characteristics. Meanwhile, they were also relatively conserved among themselves, at least from the perspective of classes. Notably, the transcription factors associated with spermatogenesis were also identified, containing CTCF, EWSR1, and FOXL2. DKKL1 exhibited sexually dimorphic expression only in adult gonads, which was significantly higher than that in other somatic tissues (P < 0.001), and was barely expressed in embryonic gonads. DKKL1 transcripts showed a strong signal in sperm, while faint signals were detected in other male germ cells. DKKL1 in adult testes progressively increased per month (P < 0.05), displaying a seasonal expression trait. DKKL1 was significantly downregulated in testes cells after the sex hormones (17ß-estradiol and 17α-methyltestosterone) and Wnt/ß-catenin inhibitor treatment (P < 0.05). Likewise, the Wnt/ß-catenin inhibitor treatment dramatically repressed CTCF, EWSR1, and FOXL2 expression. Conversely, they were markedly upregulated after the 17ß-estradiol and 17α-methyltestosterone treatment, suggesting that the three transcription factors might bind to different promoter regions, thereby negatively regulating DKKL1 transcription in response to the changes in the estrogen and androgen pathways, and positively controlling DKKL1 transcription in answer to the alterations in the Wnt/ß-catenin pathway. Knockdown of DKKL1 significantly reduced the relative expression of HMGB2 and SPATS1 (P < 0.01), suggesting that it may be involved in seasonal spermatogenesis of P. sinensis through a positive regulatory interaction with these two genes. Overall, our findings provide novel insights into the genome evolution and potential functions of seasonal spermatogenesis of P. sinensis DKKL1.


Asunto(s)
Tortugas , Animales , Masculino , Tortugas/genética , Tortugas/metabolismo , beta Catenina/metabolismo , Metiltestosterona/metabolismo , Semen , Espermatogénesis/genética , Estradiol/metabolismo , Genómica , Mamíferos
8.
PeerJ ; 11: e16218, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810767

RESUMEN

In recent years, environmental DNA (eDNA) technology has become an accepted approach for investigating rare and endangered species because of its economic efficiency, high sensitivity, and non-invasiveness. The Asian giant softshell turtle (Pelochelys cantorii) is a first-class protected aquatic animal in China, and traditional resource survey methods have not identified its natural populations for many years. In this study, primers and a TaqMan probe targeting ND5 were designed, reaction conditions were optimized, a standard curve was constructed using synthetic DNA, and an eDNA quantitative PCR (qPCR) detection method was established. The eDNA detection technology for P. cantorii revealed that the number of species in the experimental pools showed a significant linear relationship with the eDNA concentration (p < 0.05). The eDNA concentration was negatively correlated with the length of time after the removal of P. cantorii and retention in the water body for 9 days. The qPCR detection method for P. cantorii eDNA established in this study can be applied to the qualitative detection of P. cantorii in water bodies, as well as to preliminary evaluation of its relative biomass. This can serve as a baseline for the investigation of natural P. cantorii population and the evaluation of its wild release effects.


Asunto(s)
ADN Ambiental , Tortugas , Animales , ADN Ambiental/genética , Biomasa , Tortugas/genética , Reptiles/genética , Agua
9.
Biology (Basel) ; 12(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37508370

RESUMEN

The Asian giant soft-shelled turtle, Pelochelys cantorii (Trionychidae), is one of the largest aquatic turtles in China and was designated as a First-Grade Protected Animal in China in 1989. Previous investigation based on a combination of Illumina short-read, PacBio long-read and Hi-C scaffolding technologies acquired a high-quality chromosome-level genome of Pc. cantorii. In this study, comparative genomic analysis between Pc. cantorii and 16 other vertebrate genomes indicated that turtles separated from the ancestor of archosaurians approximately 256.6 (95% highest posterior density interval, 263.6-251.9) million years ago (Mya) (Upper Permian to Triassic) and that Pc. cantorii separated from the ancestor of Pd. sinensis and R. swinhoei approximately 59.3 (95% highest posterior density interval, 64.3-54.3) Mya. Moreover, several candidate genes, such as VWA5A, ABCG2, A2M and IGSF1, associated with tumor suppression, growth and age were expanded, implicating their potential roles in the exceptional longevity of turtles. This new chromosome-level assembly has important scientific value in the study of conservation of Pc. cantorii and also enriches the evolutionary investigation of turtle species.

10.
Biology (Basel) ; 12(7)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37508424

RESUMEN

Hibernation in turtle species is an adaptive survival strategy to colder winter conditions or food restrictions. However, the mechanisms underlying seasonal adaptions remain unclear. In the present study, we collected hemocytes from Pelochelys cantorii and compared the molecular signature of these cells between the active state and hibernation period based on single-cell RNA sequencing (scRNA-seq) analysis. We found six cell types and identified a list of new marker genes for each cell subpopulation. Moreover, several heat shock genes, including the Hsp40 family chaperone gene (DNAJ) and HSP temperature-responsive genes (HSPs), were upregulated during the hibernation period, which predicted these genes may play crucial roles in the stress response during hibernation. Additionally, compared to hemocytes in the active state, several upregulated differentially expressed immune-related genes, such as stat1, traf3, and socs6, were identified in hemocytes during the hibernation period, thus indicating the important immune function of hemocytes. Therefore, our findings provide a unified classification of P. cantorii hemocytes and identify the genes related to the stress response, thereby providing a better understanding of the adaptive mechanisms of hibernation.

11.
Sci Data ; 10(1): 754, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914689

RESUMEN

The Asian giant softshell turtle Pelochelys cantorii is one of the largest aquatic turtles in China and has been designated a First Grade Protected Animal in China. To advance conservation research, a combination of Illumina short-read, PacBio long-read, and Hi-C scaffolding technologies was used to develop a high-quality chromosome-level genome assembly for P. cantorii. A total of 262.77 Gb of clean data were produced (121.6 × depth) and then the genome was assembled into 2.16 Gb with a contig N50 of 41.44 Mb and scaffold N50 length of 120.17 Mb, respectively. Moreover, about 99.98% assembly genome sequences were clustered and ordered onto 33 pseudochromosomes. Genome annotation revealed that 21,833 protein-coding genes were predicted, and 96.40% of them were annotated. This new chromosome-level assembly will be an enabling resource for genetic and genomic studies to support fundamental insight into P. cantorii biology.


Asunto(s)
Genoma , Tortugas , Animales , Cromosomas/genética , Genómica , Anotación de Secuencia Molecular , Filogenia , Tortugas/genética
12.
Animals (Basel) ; 13(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37444017

RESUMEN

Offspring size-number trade-off is a critical component of life-history theory and is important for further understanding the reproductive strategies of animals. The relationship between this trade-off and maternal size has been explored in several turtle species, except for the Asian yellow pond turtle, Mauremys mutica. To investigate how the maternal condition affects offspring size and number, we explored the relationships among the maternal body size and the number and size of cultured M. mutica hatchlings using a 4-year dataset. Our results showed that different females not only produced different sizes of offspring but also produced different numbers of offspring. No trade-off in egg size number was detected. According to regression analysis, we did not find that the maternal body size significantly influenced the offspring mass; however, we detected that the offspring size was significantly correlated with the clutch size and maternal age. The mean body mass of offspring increased with maternal age, and the clutch size varied significantly over four years, which was correlated with offspring size, maternal body size and age. However, the number of offspring per female increased with the maternal plastron length rather than age. Our results were inconsistent with the optimal offspring size theory in that females did not increase their offspring size but rather increased the offspring number to increase their fitness, which will also provide a basis for the efficient cultivation management of turtles.

13.
Front Genet ; 14: 1109478, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816024

RESUMEN

Introduction: Bone morphogenetic proteins (BMPs) play a crucial role in bone formation and differentiation. Recent RNA-Seq results suggest that BMPs may be involved in the sex differentiation of P. sinensis, yet more relevant studies about BMPs in P. sinensis are lacking. Methods: Herein, we identified BMP gene family members, analyzed the phylogeny, collinear relationship, scaffold localization, gene structures, protein structures, transcription factors and dimorphic expression by using bioinformatic methods based on genomic and transcriptomic data of P. sinensis. Meanwhile, qRT-PCR was used to verify the RNA-Seq results and initially explore the function of the BMPs in the sex differentiation of P. sinensis. Results: A total of 11 BMP genes were identified, 10 of which were localized to their respective genomic scaffolds. Phylogenetic analysis revealed that BMP genes were divided into eight subfamilies and shared similar motifs ("WII", "FPL", "TNHA", "CCVP", and "CGC") and domain (TGF-ß superfamily). The results of the sexually dimorphic expression profile and qRT-PCR showed that Bmp2, Bmp3, Bmp15l, Bmp5, Bmp6 and Bmp8a were significantly upregulated in ovaries, while Bmp2lb, Bmp7, Bmp2bl and Bmp10 were remarkable upregulated in testes, suggesting that these genes may play a role in sex differentiation of P. sinensis. Discussion: Collectively, our comprehensive results enrich the basic date for studying the evolution and functions of BMP genes in P. sinensis.

14.
Biochem Genet ; 50(11-12): 946-58, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22990954

RESUMEN

V-set and immunoglobulin domain-containing protein 4 (VSIG4), a member of the immunoglobulin superfamily, plays an important role in the immune system. This study isolated and characterized a cDNA encoding VSIG4 (MaVSIG4) from the Asian yellow pond turtle (Mauremys mutica). The MaVSIG4 cDNA is 1840 bp long and contains an open reading frame of 1,182 bp that encodes a polypeptide of 372 amino acids. The genomic sequence of MaVSIG4 spans 7,682 bp, with six exons and five introns. The phylogenetic tree shows that MaVSIG4 is most closely related to Gallus gallus VSIG4. The expression analysis by real-time PCR reveals that MaVSIG4 is ubiquitously expressed in various healthy tissues, with a higher expression level in the liver. After immune stimulation, the expression level of MaVSIG4 sharply decreased in the liver, heart, and kidney at 12 h (P < 0.01). These results provide a basis for further study of the function of MaVSIG4 in the turtle's immune system.


Asunto(s)
Regulación de la Expresión Génica , Receptores de Complemento/metabolismo , Tortugas/genética , Tortugas/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Secuencia Conservada , ADN Complementario/genética , Exones , Perfilación de la Expresión Génica , Biblioteca de Genes , Intrones , Riñón/citología , Riñón/inmunología , Riñón/metabolismo , Hígado/citología , Hígado/inmunología , Hígado/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Estructura Terciaria de Proteína , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Complemento/genética , Receptores de Complemento/inmunología , Alineación de Secuencia
15.
Sci Rep ; 12(1): 7905, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550586

RESUMEN

Knowledge of sex determination has important implications in physiology, ecology and genetics, but the evolutionary mechanisms of sex determination systems in turtles have not been fully elucidated, due to a lack of reference genomes. Here, we generate a high-quality genome assembly of Asian yellow pond turtle (Mauremys mutica) using continuous long-read (PacBio platform), Illumina, and high-throughput chromatin conformation capture (Hi-C) technologies. The M. mutica haplotype has a genome size of 2.23 Gb with a contig N50 of 8.53 Mb and scaffold N50 of 141.98 Mb. 99.98% sequences of the total assembly are anchored to 26 pseudochromosomes. Comparative genomics analysis indicated that the lizard-snake-tuatara clade diverged from the bird-crocodilian-turtle clade at approximately 267.0-312.3 Mya. Intriguingly, positive selected genes are mostly enriched in the calcium signaling pathway and neuroactive ligand-receptor interaction, which are involved in the process of temperature-dependent sex determination. These findings provide important evolutionary insights into temperature-dependent sex determination system.


Asunto(s)
Tortugas , Animales , Cromosomas , Tamaño del Genoma , Filogenia , Análisis de Secuencia de ADN , Temperatura , Tortugas/genética
16.
Animals (Basel) ; 12(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35883403

RESUMEN

Spats1 (spermatogenesis-associated, serinerich 1) has been characterized as a male-biased gene which acts an important role in the germ cell differentiation of mammals. Nevertheless, the function of Spats1 in the Chinese soft-shelled turtle (P. sinensis) has not yet been reported. To initially explore the expression of Spats1 in P. sinensis and its response to sex steroid treatment, we cloned the CDS of Spats1 for the first time and analyzed its expression profile in different tissues, including the testes in different seasons. The Spats1 cDNA fragment is 1201 base pairs (bp) in length and contains an open reading frame (ORF) of 849 bp, which codes for 283 amino acids. Spats1 mRNA was highly expressed in the testes (p < 0.01) and barely detectable in other tissues. In P. sinensis, the relative expression of Spats1 also responsive to seasonal changes in testis development. In summer (July) and autumn (October), Spats1 gene expression was significantly higher in the testes than in other seasons (p < 0.05). Spats1 mRNA was found to be specifically expressed in germ cells by chemical in situ hybridization (CISH), and it was mainly located in primary spermatocytes (Sc1), secondary spermatocytes (Sc2) and spermatozoa (St). Spats1 expression in embryos was not significantly changed after 17α-methyltestosterone (MT)and 17ß-estradiol (E2) treatment. In adults, MT significantly induced Spats1 expression in male P. sinensis. However, the expression of Spats1 in testes was not responsive to E2 treatment. In addition, the expression of Spats1 in females was not affected by either MT or E2 treatment. These results imply that Spats1 is a male-specific expressed gene that is mainly regulated by MT and is closely linked to spermatogenesis and release in P. sinensis.

17.
Biology (Basel) ; 11(6)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35741355

RESUMEN

In aquaculture, the Chinese soft-shelled turtle (Pelodiscus sinensis) is an economically important species with remarkable gender dimorphism in its growth patterns. However, the underlying molecular mechanisms of this phenomenon have not been elucidated well. Here, we conducted a whole-transcriptome analysis of the female and male gonads of P. sinensis. Overall, 7833 DE mRNAs, 619 DE lncRNAs, 231 DE circRNAs, and 520 DE miRNAs were identified. Some "star genes" associated with sex differentiation containing dmrt1, sox9, and foxl2 were identified. Additionally, some potential genes linked to sex differentiation, such as bmp2, ran, and sox3, were also isolated in P. sinensis. Functional analysis showed that the DE miRNAs and DE ncRNAs were enriched in the pathways related to sex differentiation, including ovarian steroidogenesis, the hippo signaling pathway, and the calcium signaling pathway. Remarkably, a lncRNA/circRNA-miRNA-mRNA interaction network was constructed, containing the key genes associated with sex differentiation, including fgf9, foxl3, and dmrta2. Collectively, we constructed a gender dimorphism profile of the female and male gonads of P. sinensis, profoundly contributing to the exploration of the major genes and potential ncRNAs involved in the sex differentiation of P. sinensis. More importantly, we highlighted the potential functions of ncRNAs for gene regulation during sex differentiation in P. sinensis as well as in other turtles.

18.
Artículo en Inglés | MEDLINE | ID: mdl-34689019

RESUMEN

The Asian yellow pond turtle (Mauremys mutica) displays temperature-dependent sex determination (TSD), in which incubation temperature during embryonic development determines the sexual fate of the individual. However, the mechanism of the sex determination/differentiation of Mauremys mutica remains a mystery. Here, we first analyzed the temperature-specific gonadal transcriptomes of Mauremys mutica prior to gonad formation and gonads during the thermosensitive period. We uncovered a list of candidates that respond to temperature stimuli enriched in several categories, such as heat shock protein family members dnajb6a, dnaja4, hspa8 and hsp90aa1, temperature sensor genes mmp17 and mmp28, and putative novel temperature-responsive genes tmco6, gria3 and eif3f. Notably, striking differences were identified in the expression profiles of genes underlying sexual development, such as tex15, insr, igf1r, cirbp, esr1, dmrt2 and Serpinh1. Moreover, we analyzed the similarity and divergence of the timecourse of gene expression among Mauremys mutica and two other reported TSD turtles (Trachemys scripta and Chrysemys picta). The shared genes revealed the common gonad-specific regulatory mechanisms existing in these three TSD turtles that initiate their sexual development. Therefore, our findings could provide basic data to elucidate the mechanisms of sex determination/differentiation of M. mutica, even contributing to further understanding of these mechanisms in other TSD turtles.


Asunto(s)
Procesos de Determinación del Sexo , Transcriptoma , Animales , Gónadas , Procesos de Determinación del Sexo/genética , Diferenciación Sexual , Temperatura
19.
Anim Reprod Sci ; 183: 46-55, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28619267

RESUMEN

As a result of hunting and habitat loss, wild populations of the yellow pond turtle, Mauremys mutica, are decreasing. The International Union for Conservation of Nature considers M. mutica to be an endangered species. All studied freshwater turtles have polyandrous mating with multiple paternity. To survey the mating strategies of M. mutica, 1year's genetic data of parents and all offspring in an artificially captive population were analyzed. Two groups of multiplex PCR containing 16 microsatellite loci were used to analyze the paternity of 302 hatchlings from 132 parents and from 159 clutches. The genetic data indicated that multiple paternity is rare in M. mutica, occurring in only seven of 138 clutches. Although the frequency of multiple paternity was only 5.07%, results of the present research indicate that M. mutica has a polyandrous mating system. In the breeding season, the successive clutches of 34 females each had the same paternity as the previous clutches. It was observed that four males (f85, f58, f87, and f76) had more than 20 offspring each, totaling 99 and representing 32.78% of all offspring. This finding implies that paternity is competitive in this artificially captive population and might bias the genetic diversity of the offspring.


Asunto(s)
Preferencia en el Apareamiento Animal/fisiología , Tortugas/genética , Crianza de Animales Domésticos , Animales , Femenino , Masculino , Repeticiones de Microsatélite , Paternidad , Tortugas/fisiología
20.
Ying Yong Sheng Tai Xue Bao ; 21(1): 215-20, 2010 Jan.
Artículo en Zh | MEDLINE | ID: mdl-20387446

RESUMEN

Yellow pond turtle (Mauremys mutica) eggs were incubated in vermiculite under nine combinations of temperature and humidity, i. e., 25 degrees C and -12 kPa, 29 degrees C and -12 kPa, 33 degrees C and -12 kPa, 25 degrees C and -150 kPa, 29 degrees C and -150 kPa, 33 degrees C and -150 kPa, 25 degrees C and -300 kPa, 29 degrees C and -300 kPa, and 33 degrees C and -300 kPa, aimed to study the effects of incubation temperature and its interaction with substrate humidity on the embryonic development of M. mutica. The initial egg mass, incubation temperature, substrate humidity, and the interaction of incubation temperature and substrate humidity had significant effects on the mass increment of egg in the course of hatching. At the same temperature, eggs incubated in wetter substrates (-12 kPa) gained more mass than those incubated in drier substrates (-150 kPa and -300 kPa). Incubation temperature affected hatching period significantly, while substrate humidity and its interaction with temperature did not. Both incubation temperature and substrate humidity affected hatching success and shell crack rate significantly. Abnormal hatchlings were found when incubated at 25 degrees C and 33 degrees C, but not at 29 degrees C. Incubation temperature had significant effects on the hatchling mass, carapace length and width, plastron length and width, body height, and tail length; while substrate humidity only affected hatchlings plastron length. The interaction of incubation temperature and substrate humidity did not affect the morphology of hatchlings.


Asunto(s)
Embrión no Mamífero/fisiología , Desarrollo Embrionario , Humedad , Temperatura , Tortugas/embriología , Animales , Embrión no Mamífero/embriología , Incubadoras , Óvulo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA