Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 32(7): 11726-11736, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571013

RESUMEN

A distributed optical fiber magnetic field sensor based on a polarization-sensitive optical frequency domain reflectometer (POFDR) is proposed. It extracts the accumulated Faraday rotation by combining the Stokes vectors and the backward Mueller matrices from the measured states of polarization (SOPs) and obtains the magnetic field component. This method avoids adjusting the input polarization during the magnetic field sensing process. It overcomes the drawback of the conventional POFDR scheme, which requires at least two sets of different input SOPs for each sensing. Finally, the aforementioned effectiveness has been experimentally verified by using a single-mode sensing fiber. The results show that the sensor has good repeatability and linearity. The measurement error of the magnetic field sensor is 19.4 mT. The measured magnetic field variations agree with the applied ones with similarities higher than 0.98.

2.
Opt Express ; 32(1): 586-598, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175084

RESUMEN

We numerically and experimentally demonstrated a high-sensitivity and high-accuracy temperature sensor based on guided acoustic radial modes of forward stimulated Brillouin scattering (FSBS)-based optomechanics in thin-diameter fibers (TDF). The dependence of the FSBS-involved electrostrictive force on the fiber diameter is systematically investigated. As the diameters of the fiber core and cladding decrease, the intrinsic frequency of each activated acoustic mode and corresponding FSBS gain are expected to be accordingly increased, which benefits the significant enhancement of its temperature sensitivity as well as the optimization of the measurement accuracy. In validations, by utilizing TDFs with fiber diameters of 80 µm and 60 µm, the proof-of-concept experiments proved that sensitivities of the TDF-based FSBS temperature sensor with radial modes from R0,4 to R0,15 increased from 35.23 kHz/°C to 130.38 kHz/°C with an interval of 8.74 kHz/°C. The minimum measurement error (i.e., 0.15 °C) of the temperature sensor with the 60 µm-TDF is 2.5 times lower than that of the 125 µm-SSMF (i.e., 0.39 °C). The experimental and simulated results are consistent with theoretical predictions. It is believed that the proposed approach with high sensitivity and accuracy could find potential in a wide range of applications such as environmental monitoring, chemical engineering, and cancer detection in human beings.

3.
Opt Express ; 32(5): 7540-7552, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439432

RESUMEN

A design of a heterogeneous integrated optical fiber with side nickel core (SNCF) has been proposed and demonstrated for distributed fiber-optic magnetic field sensing. Experimental results show that magnetic properties of nickel can be preserved well after the high temperature drawing process. The functionality of the SNCF has been well verified, with the sensitivity for DC magnetic field being up to -2.42 µÎµ/mT (below 8 mT). Besides, the SNCF finally presents magnetostriction saturation under a certain magnetic field, which agrees with the simulation. The proposed direct thermal drawing method to produce metal-heterogeneous integrated optical fiber paves the way for a simple and scalable means of incorporating metallic materials into fibers, as well as providing a promising candidate for long-distance distributed magnetic field sensing.

4.
Opt Express ; 32(12): 21447-21458, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38859498

RESUMEN

A fiber Bragg grating (FBG) accelerometer based on cross-type diaphragm was proposed and designed, in which the cross-beam acts as a spring element. To balance the sensitivity and stability, the accelerometer structure was optimized. The experimental results show that the designed device has a resonant frequency of 556 Hz with a considerable wide frequency bandwidth of up to 200 Hz, which is consistent with the simulation. The sensitivity of the device is 12.35 pm/g@100 Hz with a linear correlation coefficient of 0.99936. The proposed FBG accelerometer has simple structure and strong anti-interference capability with a maximal cross-error less than 3.26%, which can be used for mechanical structural health monitoring.

5.
Opt Lett ; 49(11): 2869-2872, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824279

RESUMEN

In this Letter, we propose an in-line tilted fiber Bragg grating sensor for temperature and strain measurements. The grating is inscribed in a specialty optical fiber using tightly focused femtosecond laser pulses and the line-by-line direct writing method. Beside the central core in which the grating is produced, a hollow channel filled with glycerol aqueous solution significantly improves the sensitivity of the fiber cladding modes due to its high thermo-optic coefficient. We show that the temperature sensitivity of the core mode is 9.8 pm/°C, while the one of the cladding modes is strongly altered and can reach -24.3 pm/°C, in the investigated range of 20-40°C. For the strain measurement, sensitivities of the core mode and the cladding modes are similar (∼0.60 pm/µÎµ) between 0 and 2400 µÎµ. The significative difference of temperature sensitivity between the two modes facilitates the discrimination of the dual parameters in simultaneous measurements.

6.
Opt Lett ; 49(7): 1753-1756, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560854

RESUMEN

Current or magnetic field sensing is usually achieved by exploiting the Faraday effect of an optical material combined with an interferometric probe that provides the sensitivity. Being interferometric in nature, such sensors are typically sensitive to several other environmental parameters such as vibrations and mechanical disturbances, which, however, inevitably impose the inaccuracy and instability of the detection. Here we demonstrate a polarimetric fiber optic current sensor based on orbital angular momentum modes of an air-core optical fiber. In the fiber, spin-orbit interactions imply that the circular birefringence, which is sensitive to applied currents or resultant magnetic fields, is naturally resilient to mechanical vibrations. The sensor, which effectively measures polarization rotation at the output of a fiber in a magnetic field, exhibits high linearity in the measured signal versus the applied current that induces the magnetic field, with a sensitivity of 0.00128 rad/A and a noise limit of 1×10-5/H z. The measured polarization varies within only ±0.1% under mechanical vibrations with the frequency of up to 800 Hz, validating the robust environmental performance of the sensor.

7.
Opt Lett ; 49(9): 2369-2372, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691721

RESUMEN

Perfluorinated acrylate polymer materials exhibit low absorption loss at 1310 and 1550 nm, but molecular oxygen inhibits their photocuring. We propose a novel, to our knowledge, UV photolithography method incorporating a pre-exposure process for fabricating low-loss perfluorinated acrylate polymer waveguides. During the pre-exposure process, a partially cured thin layer forms on the core layer, effectively overcoming oxygen inhibition in subsequent lithography. Furthermore, the functional group contents of the polymerized materials were characterized by a Raman spectrometer to analyze the development reaction under the pre-exposure layer. Utilizing this improved method, we fabricated a straight waveguide with a length of 21 cm. The experiments showed that the propagation losses are 0.14 dB/cm at 1310 nm and 0.51 dB/cm at 1550 nm. The inter-channel cross talk for a core pitch of 250 µm was measured as low as -49 dB at 1310 nm. Error-free NRZ data transmission over this waveguide at 25 Gb/s was achieved, showcasing the potential in optical interconnect and communication applications.

8.
Appl Opt ; 63(12): 3039-3045, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38856447

RESUMEN

A fiber Bragg grating (FBG) pressure sensor is proposed, designed, and fabricated for lateral earth pressure sensing, in which the FBG sensor is mounted on a 3D printed trestle structure combined with a membrane. The applied pressure can cause a deformation on the membrane, and then this deformation applied on the trestle structure causes tensile strain on the FBG. The proposed sensor is functionalized as a high-sensitive pressure transducer capable of converting the pressure into strain on the FBG. Here, the performance of the proposed sensor is numerically and experimentally investigated. The results show that the pressure sensitivity at 30°C is 10.62 pm/kPa within a range of 0-0.6 MPa. Due to the thermal expansion of the structure, the pressure sensitivity coefficient decreases with the increase of temperature; however, the cross effect between the temperature and strain on the sensing sensitivity is investigated and can be eliminated. The fabricated sensor has advantages of high sensitivity, good stability, and high pressure resolution, so it has potential in the field of structural health monitoring.

9.
Opt Express ; 31(15): 24623-24632, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37475284

RESUMEN

An all-fiber fiber coupler was demonstrated for pumping orbital angular momentum (OAM) modes amplification, which was fabricated by side-polishing and bonding a ring-core erbium-doped fiber (RC-EDF) and a pre-tapered side-polished single-mode fiber (SMF). With the selected phase-matching condition at 976 nm, the pumping laser was coupled into the RC-EDF from the SMF with optimized high efficiency, whereas the 1st to 3rd-order OAM mode signals were transmitted with the low insertion loss in the RC-EDF over a broadband wavelength range from 1530 to 1565 nm. This all-fiber wavelength division multiplexing coupler was optimized by the polished length and depth of the two coupled fibers. The insertion loss for the OAM signal modes was obtained lower than 0.58 dB with the pump power coupling ratio of above 90%. The proposed side-polished pumping coupler technique can ensure high-order OAM modes amplification, paving the way for the all-fiber optical amplifier in high-capacity modal-division multiplexing fiber communication systems.

10.
Opt Lett ; 48(16): 4412-4415, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582045

RESUMEN

We demonstrate a diaphragm-integrated ring waveguide coupler fabricated by the two-photon direct laser wring technique as an ultrasonic sensor, which is integrated on an optical fiber tip. The device consists of a micro-ring waveguide with a diameter of 5 µm functionalized as an optical fiber tip light reflection mirror and a straight waveguide connecting a diaphragm. The evanescent field coupling can be realized between the two waveguides, and the coupling efficiency can be changed due to the variation of the coupling gap induced by ultrasound. Accordingly, the light reflection can be changed. Based on the plate vibration theory, the vibration frequency can be changed through optimizing the diaphragm size. The experiments show that the device exhibits a high sensitivity and low noise equivalent acoustic signal level of 1.07 mPa/Hz1/2 at 100 kHz, which has great potential in various acoustic wave sensing applications.

11.
Opt Express ; 30(19): 33639-33651, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36242394

RESUMEN

An all-silica Fabry-Perot interferometer (FPI) based on a microbubble for high-pressure and high-temperature measurements is proposed and demonstrated. The microbubble-based air cavity is fabricated using a hollow silica tube and a single-mode optical fiber for pressure sensing. The suitable thickness between the two end faces of the microbubble enables the silica cavity to be used for temperature sensing. The wavelength shift of the reflection spectrum versus pressure is linear, and the sensitivity reaches -5.083 nm/MPa at room temperature (20 °C) within the range of 0 - 4 MPa. The temperature sensitivity reaches 12.715 pm/°C within the range of 20 - 700 °C. The very low temperature-pressure cross-sensitivity of the two cavities indicates that the proposed FPI sensor offers great potential for simultaneous high-pressure and high-temperature measurements in harsh environments.

12.
Opt Express ; 30(10): 16606-16618, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36221499

RESUMEN

In this study, a sapphire-derived fiber (SDF)-based Fabry-Pérot interferometer (FPI) is proposed and experimentally demonstrated as a high-temperature sensor using the arc discharge crystallization process, forming a region with disordered mullite grains. This shows that the disordered mullite grains are related to the gradual temperature distribution during the arc discharge process, which results in a larger refractive index (RI) modulation of the SDF near the fusing area, forming a reflection mirror. An FPI was obtained by combining the optical fiber end facet. Considering the high-temperature resistance of the fiber, the fabricated FPI was used for high-temperature sensing. This shows that the device can operate at temperatures of up to 1200 °C with a sensitivity of 15.47 pm/°C, demonstrating that the proposed devices have potential applications in high-temperature environments.

13.
Sensors (Basel) ; 22(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35808196

RESUMEN

A diaphragm-based hermetic optical fiber Fabry-Pérot (FP) cavity is proposed and demonstrated for pressure sensing. The FP cavity is hermetically sealed using one-step CO2 laser welding with a cavity length from 30 to 100 µm. A thin diaphragm is formed by polishing the hermetic FP cavity for pressure sensing. The fabricated FP cavity has a fringe contrast larger than 15 dB. The experimental results show that the fabricated device has a linear response to the change in pressure, with a sensitivity of -2.02 nm/MPa in the range of 0 to 4 MPa. The results demonstrate that the proposed fabrication technique can be used for fabricating optical fiber microcavities for sensing applications.

14.
Nano Lett ; 21(6): 2422-2428, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33720738

RESUMEN

An inverse-designed metalens is proposed, designed, and fabricated on an optical fiber tip via a 3D direct laser-writing technique through two-photon polymerization. A computational inverse-design method based on an objective-first algorithm was used to design a thin circular grating-like structure to transform the parallel wavefront into a spherical wavefront at the near-infrared range. With a focal length about 8 µm at an operating wavelength of 980 nm and an optimized focal spot at the scale of 100 nm, our proposed metalens platform is suitable for two-photon direct laser lithography. We demonstrate the use of the fabricated metalens in a direct laser lithography system. The proposed platform, which combines the 3D printing technique and the computational inverse-design method, shows great promise for the fabrication and integration of multiscale and multiple photonic devices with complex functionalities.

15.
Opt Express ; 29(9): 12880-12892, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33985034

RESUMEN

This paper demonstrates an underwater localization system based on an improved phase-sensitive optical time domain reflectometry (φ-OTDR). To localize the underwater acoustic source, 3D-printed materials with relatively high Poisson's ratio and low elastic modulus are wrapped by single-mode optical fibers to serve as an L-shaped planar sensing array, yielding a high-fidelity retrieval of acoustic wave signals. Based on the time difference of arrival (TDOA) algorithm, the time delay of signals detected by multiple sensing elements is used to locate the underwater acoustic source. Consequently, the three-dimensional localization feasibility of the proposed system is experimentally verified, showing a measurement error of about 2% in the localization range. It indicates that the proposed scheme is of great potential for applications in the underwater environment, such as trajectory tracking, oil/gas pipeline security monitoring and coastal defense.

16.
Opt Express ; 29(15): 24289-24299, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614677

RESUMEN

We have proposed and experimentally demonstrated a sapphire-derived fiber (SDF) and silica capillary-based compound Fabry-Pérot interferometer (FPI) for high-pressure and high-temperature sensing. The SDF owns high alumina dopant concentration core, which can generate a mullite crystallization region during an arc discharge process. The crystallization region acts as a reflective interface to form one FPI in the SDF. The other FPI contains an air cavity constructed by the silica capillary and is used for high-pressure sensing. Both gas pressure within a range from 0 MPa to 4 MPa and temperature within a range from 20°C to 700°C are measured. Experimental results show that the wavelength shift of the FPI versus the applied pressure is linear at each tested temperature. The pressure sensitivity is measured to be 5.19 nm/MPa at a high temperature of 700°C, and the linear responses show excellent repeatability with linearity of 0.999. Meanwhile, the proposed FPI can stably function at a high temperature of 700°C with a temperature sensitivity of 0.013 nm/°C. The proposed FPI sensor provides a promising candidate for simultaneous measurement of high pressure and high temperature in extreme conditions.

17.
Opt Express ; 29(21): 34370-34377, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809229

RESUMEN

An approach of continuously tunable unidirectional emission through bending a notched-elliptical polymer microdisk is proposed. The characteristics of the bending-dependent action are carefully analyzed, and the resonance wavelength for unidirectional emission can be tuned continuously through bending the device. Such a whispering-gallery-mode microresonator enables unidirectional emission with ultra-low divergence, of which the emission efficiency and Q factor are stabilized, demonstrating the whole structure is robust and relatively insensitive within a certain bending angle range. A maximum resonance wavelength shift of ∼100 nm and Q factor of 1500 can be achieved with the total size of the microdisk less than 10 µm. This kind of microresonator is promising for applications in multilevel integrated photonics circuits and may open the door to new functionalities of resonator devices, from sensing to optical amplification.

18.
Am J Med Genet A ; 185(2): 625-630, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33258232

RESUMEN

Self-improving dystrophic epidermolysis bullosa is a rare subtype of dystrophic epidermolysis bullosa (DEB) characterized by significant improvement in skin fragility within the first few years of life. Genetic inheritance has previously been reported as autosomal dominant or recessive with both forms harboring mutations in COL7A1. To date, there have been no reports of this rare clinical entity from various Southeast Asian ethnicities. Here, we describe the clinical and molecular features of five patients from the Southeast Asia region who presented with predominantly acral-distributed blisters and erosions in the first few days of life. Blistering resolved over several months, without appearance of new blisters. By immunofluorescence, intraepidermal retention of Type VII collagen was observed in all patient skin biopsies when investigated with antibody staining. Genetic analysis of four patients revealed pathogenic variants in COL7A1 which have not been previously reported. The clinical diagnosis in these rare patients is confirmed with molecular histology and genetic characterization.


Asunto(s)
Colágeno Tipo VII/genética , Epidermólisis Ampollosa Distrófica/genética , Predisposición Genética a la Enfermedad , Anomalías Cutáneas/genética , Asia Sudoriental/epidemiología , Biopsia , Preescolar , Epidermólisis Ampollosa Distrófica/diagnóstico , Epidermólisis Ampollosa Distrófica/fisiopatología , Epidermólisis Ampollosa Distrófica/terapia , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Anomalías Cutáneas/diagnóstico , Anomalías Cutáneas/fisiopatología , Anomalías Cutáneas/terapia
19.
Acta Pharmacol Sin ; 42(2): 218-229, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32747718

RESUMEN

Aconitine (ACO), a main active ingredient of Aconitum, is well-known for its cardiotoxicity. However, the mechanisms of toxic action of ACO remain unclear. In the current study, we investigated the cardiac effects of ACO and mesaconitine (MACO), a structurally related analog of ACO identified in Aconitum with undocumented cardiotoxicity in guinea pigs. We showed that intravenous administration of ACO or MACO (25 µg/kg) to guinea pigs caused various types of arrhythmias in electrocardiogram (ECG) recording, including ventricular premature beats (VPB), atrioventricular blockade (AVB), ventricular tachycardia (VT), and ventricular fibrillation (VF). MACO displayed more potent arrhythmogenic effect than ACO. We conducted whole-cell patch-clamp recording in isolated guinea pig ventricular myocytes, and observed that treatment with ACO (0.3, 3 µM) or MACO (0.1, 0.3 µM) depolarized the resting membrane potential (RMP) and reduced the action potential amplitude (APA) and durations (APDs) in a concentration-dependent manner. The ACO- and MACO-induced AP remodeling was largely abolished by an INa blocker tetrodotoxin (2 µM) and partly abolished by a specific Na+/K+ pump (NKP) blocker ouabain (0.1 µM). Furthermore, we observed that treatment with ACO or MACO attenuated NKP current (INa/K) and increased peak INa by accelerating the sodium channel activation with the EC50 of 8.36 ± 1.89 and 1.33 ± 0.16 µM, respectively. Incubation of ventricular myocytes with ACO or MACO concentration-dependently increased intracellular Na+ and Ca2+ concentrations. In conclusion, the current study demonstrates strong arrhythmogenic effects of ACO and MACO resulted from increasing the peak INa via accelerating sodium channel activation and inhibiting the INa/K. These results may help to improve our understanding of cardiotoxic mechanisms of ACO and MACO, and identify potential novel therapeutic targets for Aconitum poisoning.


Asunto(s)
Aconitina/análogos & derivados , Aconitina/toxicidad , Arritmias Cardíacas/inducido químicamente , Cardiotoxicidad/etiología , Aconitina/aislamiento & purificación , Aconitum/química , Potenciales de Acción/efectos de los fármacos , Animales , Arritmias Cardíacas/fisiopatología , Cardiotoxicidad/fisiopatología , Electrocardiografía , Cobayas , Masculino , Potenciales de la Membrana/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Técnicas de Placa-Clamp , Canales de Sodio/efectos de los fármacos , Canales de Sodio/metabolismo
20.
Appl Opt ; 60(27): 8493-8498, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34612952

RESUMEN

A two-photon 3D printed polymer magnetic sensing device based on a Mach-Zehnder interferometer (MZI) is proposed. One arm of the MZI contains a hollow cavity and two connecting open channels that can be filled with magnetic fluids (MFs) and sealed by the UV curable adhesive, forming a magneto-optical component of the interferometer. As the magnetic field changes, the refractive index (RI) of the MF changes, and the effective RI of the guiding mode of the waveguide changes accordingly, which results in a change in the phase of the MZI. The interferometric spectra can be used to evaluate the sensing sensitivity. The MZI structure with a hollow length of 40 µm is fabricated, and the microstructure is encapsulated with MF, demonstrating a highly sensitive magnetic field device. The experimental results show that the magnetic field sensitivity of the fabricated magnetic field device is -1.675nm/Oe. For a spectrometer with a resolution of 1 pm, the minimal detectable magnetic field resolution of the sensor is up to 59.7 nT with good stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA